Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Evaluate the integral. $ \displaystyle \int \t…

04:14

Question

Answered step-by-step

Problem 27 Easy Difficulty

Evaluate the integral.

$ \displaystyle \int \tan^3 x \sec x dx $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 7

Techniques of Integration

Section 2

Trigonometric Integrals

Related Topics

Integration Techniques

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

01:55

Evaluate the integral.

…

01:35

Evaluate the integral.
…

01:22

Evaluate the integral.
…

00:59

Evaluate the integral.
…

01:03

Evaluate the integrals.

01:08

Evaluate the integrals
…

Watch More Solved Questions in Chapter 7

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70

Video Transcript

this problem is from Chapter seven section to problem number twenty seven in the book Calculus Early Transcendental lt's a Tradition by James Store We haven't indefinite inaugural of Tangent Cube time, so you can't since the power on seek an Izod is just one here. Let's pull out a factor of tangent times he can outside of this inner grant. So I have tangent Squared X And then here's the other power of tangent Times are seeking and the reason for doing so is that we'll eventually be able to deal with this term tangent time c can when we do it u substitution and that you saw it should be u equals seek an ibex But before we do that, we'Ll have to deal with this tan squared over here on the left So let's rewrite this tan squared Soto, rewrite this tan square We can use our identity Our protagonist identity on the right Over here circled c can square is tan squared plus one So that means town square is C can't squared minus one So that becomes That's our chance Weird and we still have this remaining term left over. Now we see that we have the right choice for our U substitution. Let's take you to be seeking so that do you is seek Innovex Time's tangent of X dx. So if we come backto are integral we see that here we have in terms of our use of we have a use squared minus one and the remaining term over here is our do you So integral becomes you squared minus one. Do you? And we can evaluate each of these inaugurals by using the power rule. So you swear becomes you, keep over three and one just becomes you and lets out our constancy of integration. And at this point, we can We're done with the integration. But we should put our final answer in terms of X. So we come back to the U substitution to rewrite this. And so you cute becomes seeking kun the Vex mine issue, which is just seeking a vex plus C. And there's our answer

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
126
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
62
Hosted by: Alonso M
See More

Related Topics

Integration Techniques

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

01:55

Evaluate the integral. $ \displaystyle \int \tan x \sec^3 x dx $

01:35

Evaluate the integral. $\int \tan ^{3} x \sec x d x$

01:22

Evaluate the integral. $\int \tan x \sec ^{3} x d x$

00:59

Evaluate the integral. $$ \int \tan ^{3} x \sec ^{3} x d x $$

01:03

Evaluate the integrals. $\int \sec ^{3} x \tan x d x$

01:08

Evaluate the integrals $$\int \sec ^{3} x \tan x d x$$

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started