Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Evaluate the integral. $ \displaystyle \int \t…

09:32

Question

Answered step-by-step

Problem 31 Hard Difficulty

Evaluate the integral.

$ \displaystyle \int \tan^5 x dx $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 7

Techniques of Integration

Section 2

Trigonometric Integrals

Related Topics

Integration Techniques

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

02:58

Evaluate the integral.
…

04:14

Evaluate the integral.

…

05:53

Evaluate the integrals.

07:25

Evaluate the integrals
…

02:17

Evaluate the integral.
…

01:32

Evaluate the integral.
…

00:57

Evaluate the integral.
…

02:08

Evaluate the indefinite in…

Watch More Solved Questions in Chapter 7

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70

Video Transcript

This problem is from Chapter seven, a section to problem number thirty one from the book Calculus Early Transcendental Sze eighth Edition by James Door and we have Indefinite and a roll of tangents of Fifth Power Vex. One way to proceed here is tow Brake This tangent to the Fifth Power by writing It is tangent, Cubed Time, Stanton Square and for the tangent squared. We can use the patellar, even identity, over here on the right to rewrite this as seek and squared X minus one. So doing so gives us ten Q picks, time seeking swear legs minus can cubed times one. It looks like for this first integral here, we can use a U substitution because we have a C can square, not quite for the second and the girl, at least not yet. So let's go ahead and break this into two separate individuals. So here, let's get color coordinated. So let's do the first integral in Blue Team Cube seek and square minus, and we have integral tension Cube. And let's go ahead and write That tangent. Cubed is Tan Square Time's tangent, and the reason for doing so is once again we can rewrite this tan squared as seeking squared minus one for first Integral in blue, we see that we can use a new substitution. Let's take you to be a tangent, then do you? A Sikh and squares GX. So let's make pick up our equality down here. So after this, you substitution, we have you cubed, do you? And we still have the second integral here, which, after using this protagonist identity, we have seeking Squared X minus one time's changing for this first integral. We can go ahead and just use the power rule, and we get used to the fourth power over four for the second and the girl. Let's go out and distribute attention through the parentheses in Let's split This up into two and a girl So we have a minus in a rule. Tangin X time seeking square X. So watch out here for the two minuses I wonder with a plus in a girl off tangent times one which is just tangent. So we'LL have to evaluate the noble of tangent. You might have memorized this one, but if not you Khun evaluated by just writing tangent assigned over co sign and then doing the use of for this one. So for this inaugural here, you could go ahead and try you two be co scientifics so that negative do you is sine x dx. So coming back to our inner rule, we could back substitute. But for now, we have more work to do. Let's go ahead and just leave this in terms of you from now. If you want you to the fourth over for minus integral here, we can rely on the same U substitution that we use earlier. Because we have the Sikh and square. So, Scott, and rely on the same you somebody's before. So this becomes you. Deal. And for this final integral. Here we have a minus. Do you see this minus over here? After you so and a girl One over co sign, which is you to you. And we could evaluate this first interval here using the power rule for this one. We could also use the power rule. But this is you to the minus one. So they're the inner world is going to be the natural log of the absolute value of you. So we have you forthe over for minus. You squared over two mine This natural log, absolute value you and plus our constancy of integration. So this step we've evaluated the inaugural. Now it's timeto get our answer back in terms of the variable X. So this is where we were lying. Are you substitution Sze? Let's just be cautious here. The first to use corresponded to our original u sub. Where is the final? You corresponded to the other use of that We used co sign so something to watch out for their So we have tangents of the four power of X over four minus tangent, square of X over two, minus natural log absolute value This you and red That's the coastline and plus our constancy and there's our answer

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
126
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
62
Hosted by: Alonso M
See More

Related Topics

Integration Techniques

Top Calculus 2 / BC Educators
Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

02:58

Evaluate the integral. $\int \tan ^{5} x d x$

04:14

Evaluate the integral. $ \displaystyle \int \tan^5 x \sec^3 x dx $

05:53

Evaluate the integrals. $\int \tan ^{5} x d x$

07:25

Evaluate the integrals $$\int \tan ^{5} x d x$$

02:17

Evaluate the integral. $$\int \tan 5 x d x$$

01:32

Evaluate the integral. $$ \int \frac{5^{\tan x}}{\cos ^{2} x} d x $$

00:57

Evaluate the integral. $$ \int \tan ^{5} x \sec x d x $$

02:08

Evaluate the indefinite integral: ʃ tan x sec^(5/2) x dx
Additional Mathematics Questions

01:17

In a survey about blood-type, 150 people responded. 61 had
type A blood,…

02:00

A spherical tank is 4 m tall and therefore has a capacity of
about 33500 …

02:40

A brine solution of salt flows at a constant rate of 4 L/min into a large ta…

07:52

Use the general slicing method to find the volume of the
following solid.…

03:14

Let F = ∇f,
where f(x, y)
=
sin(x − 7y). Find
curves C1 and …

03:43

One particular ice cream parlor has 25 different flavors
available. How m…

02:02

A random sample of n = 100 measurements has been
selected from a populati…

05:19

The amount of pollutants that are found in waterways near large
cities is…

03:30


In a clinical study of an allergy drug, 108 of the 202
subjects repor…

03:40

Does Mars, Incorporated use the same proportion of red candies
in its pla…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started