Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Evaluate the integral. $ \displaystyle \int \f…

02:24

Question

Answered step-by-step

Problem 33 Hard Difficulty

Evaluate the integral.

$ \displaystyle \int x \sec x \tan x dx $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 7

Techniques of Integration

Section 2

Trigonometric Integrals

Related Topics

Integration Techniques

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Anna Marie Vagnozzi

Campbell University

Caleb Elmore

Baylor University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

01:22

Evaluate the integral.

…

02:33

Evaluate the integral.
…

09:32

Evaluate the integral.

…

01:55

Evaluate the integral.

…

03:14

Evaluate the integral.

…

01:07

Evaluate the integral.
…

01:12

Calculate the indefinite i…

Watch More Solved Questions in Chapter 7

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70

Video Transcript

this problem is from Chapter seven, a section to problem number thirty three and the book Calculus Early Transcendental lt's a condition. My James Door. We have an indefinite integral of X times Seeking of X times Stange Innovex Let's try integration my part here. Let's take you two be x so that do you is the ex And let's take Devi to be the remaining part of the immigrant. So seek Innovex time Sandra Becks DX and we know the inner rule of that be It's just seeking the books. So playing integration by parts here this integral is UV Linus and a girl be do you So we have you times be so excited Can't minus in a girl vee do which is just seeking it Time's theatrics So we still have to evaluate this integral ves He can't what you may have memorised already which you could just apply if you memorized But if you haven't memorized this one well, let's go over a method of how to actually do this one So x again, Biggs. One way to proceed is to multiply topping the nominator Bye. See campus tangent separate us from our scratch work. We haven't changed. The integral because we had the thing in the parentheses is just one. So this is still being a roll of seeking. But doing this will make it easier to evaluate Scott and pushed the Sikh and outside the princess's multiply into the numerator. And we did seek and square plus seeking time. Sandra Denominator remains the same, and here we could see that we can apply u substitution. Let's think you to be the denominator. The reason is because then we'LL see that do you will be become a numerator. So do you become seek and time, Stan Gin plus the derivative of tangent, seek and square. So after we play early substitution we have do you on top and then you and the denominator and we have X times he can't minus natural log absolute value of you and our constant sea of integration. And let's not forget that this, you hear is not from integration. My parts This was from our U substitution. So let's be careful with the with the back substitution, we have X time seeking a Vicks minus natural log of you, which was seek and plus tangent and then plus E. And there's our answer

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
126
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
62
Hosted by: Alonso M
See More

Related Topics

Integration Techniques

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Anna Marie Vagnozzi

Campbell University

Caleb Elmore

Baylor University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

01:22

Evaluate the integral. $ \displaystyle \int x \sec x \tan x\ dx $

02:33

Evaluate the integral. $$\int x \sec x \tan x d x$$

09:32

Evaluate the integral. $ \displaystyle \int \tan^2 x \sec x dx $

01:55

Evaluate the integral. $ \displaystyle \int \tan x \sec^3 x dx $

03:14

Evaluate the integral. $ \displaystyle \int \tan^3 x \sec x dx $

01:07

Evaluate the integral. $\int \frac{\tan x}{\sec ^{2} x} d x$

01:12

Calculate the indefinite integral. $$ \int \sec (x) \tan (x) d x $$
Additional Mathematics Questions

03:21

'The Intermediate Value Theorem can be used to approximate a root. The …

03:41

'Given the demand function D(p) C 175
3p2
Find the Elasticity of …

03:23

'Devoto Incorporated has provided the following data concerning one of …

01:24

'As shown in the diagram below, circle A as a radius of 3 and circle B …

07:01

"For each pair of solids, determine if their volumes are the same or di…

00:40

'Find the area of the shaded portion of the figure. Dimensions are in f…

02:02

'JK , KL, and LJ are all tangent to circle 0 (not drawn to scale) JA = …

02:17

'AB is tangent to circle O at B. Find the length of the radius >, if…

02:15

'Find the exact circuiference and area of a circle with a diameter of 3…

02:34

'What is the sum of 3 of the interior angles of a regular hexagon?'…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started