Download the App!
Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.
Question
Answered step-by-step
Evaluate the integral.
$ \displaystyle \int^2_0 \biggl(\frac{4}{5}t^3 - \frac{3}{4}t^2 + \frac{2}{5}t \biggr) \,dt $
Video Answer
Solved by verified expert
This problem has been solved!
Try Numerade free for 7 days
Like
Report
Official textbook answer
Video by Amrita Bhasin
Numerade Educator
This textbook answer is only visible when subscribed! Please subscribe to view the answer
01:06
Frank Lin
Calculus 1 / AB
Chapter 5
Integrals
Section 3
The Fundamental Theorem of Calculus
Integration
Oregon State University
Harvey Mudd College
Idaho State University
Boston College
Lectures
05:53
In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.
40:35
In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.
0:00
Evaluate the integral.…
01:16
02:39
01:26
02:57
Evaluate the definite inte…
04:12
Evaluate integral ? ?t/4t^…
Okay, Integrate. Which means Theo exponents increases by one. We divide by the new exponents. Plug in what? This is simply too.
View More Answers From This Book
Find Another Textbook