Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Evaluate the integral. $ \displaystyle \int_1^…

02:22

Question

Answered step-by-step

Problem 25 Medium Difficulty

Evaluate the integral.

$ \displaystyle \int_0^2 y \sinh y dy $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Willis James
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Willis James

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

03:48

WZ

Wen Zheng

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 7

Techniques of Integration

Section 1

Integration by Parts

Related Topics

Integration Techniques

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

01:36

Evaluate the integral.
…

02:11

Evaluate the integral.

…

06:45

Evaluate the integral.
…

02:54

Evaluate the integral.

…

02:52

Evaluate the integral.

…

05:16

Evaluate the integral.

…

05:11

Evaluate the integral ? y^…

01:05

Evaluate the integral.
…

02:48

Evaluate the integral.
…

01:32

Evaluate the iterated inte…

02:25

Evaluate the integral.
…

02:49

Evaluate the integral.

…

00:45

Evaluate the integral.

09:56

Evaluate the integral.

…

Watch More Solved Questions in Chapter 7

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74

Video Transcript

welcome to this lesson in this lesson. Both of the definite integral. Using the integration by parts matter. So integration by part simply haven't two functions that can be expressed as u and DV. And that is he called to do the, uh, the evaluation of I am be the minus the integral from A to B over, do you? Okay, so the best part about this is to identify what is your you and what you see our debate. So here you is a function that is easily differentiable or when differentiated, it goes to zero quickly. Okay, so here will pick that. That's why. So that the you would be called to dy. Okay, Then again, we'll pick the deal. Very as okay. The hyperbolic sign of y y. So that here, if we took the integral e f y is because true they have a bolic costs of y. Okay, so none of that you have, uh, got that. We have the, um we have the way we can divide. Uh, we can find the we'll see why ass i you us? Why, then? May is close. Cool. Okay, so we value that at 02 Will come back to that later. Then I've been becomes then not do you becomes t y. Okay, so here. Yeah, Why then they hyperbolic costs. Now, if we integrate that, we have negative. A parabolic sign of why, Okay, Then you value it to the at this point. Yeah. Now the hyperbolic side why is is given us eat the power y minus e to the negative. Why all over to than the hyperbolic costs? Why is also giving us eat the power plus speed to the power negative y on to. So you will place those mhm then the whole of the differential. Uh, the whole of the integral. Yeah, now becomes, Why then needs the power. Yeah. Yeah, right. Yeah. So that is 02 Then we have this photos for the side. The hyperbolic sine. Yeah. Yeah. Okay, so now this gives us Yeah. If you put the zero out there because of this, it becomes zero. And that is gone. So would have only one by four black. The second part we have right this through. Okay. Mhm. And we have one minus one all over to, uh that is minus one. Okay, so that goes to zero. Well, yeah. I love this. This causes all that. So we have E Yeah, yeah, yeah. Okay. Oh, yeah, Yeah. Mhm. Okay. Yeah, yeah, yeah. Okay, so here. Wow, we have two e Thank you. Last to hope that. Oh, yeah. Not bad. Oh. Oh, Okay. So we're just multiplying to buy this so that we can let all of them sit on a bath. So this becomes very eat about you, then minus e to the power. Negative, too. All over. So this is that and of the lesson. And this is the answer for that definite integral. Yeah. Okay, thanks to a time, The end of the lesson.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
142
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
68
Hosted by: Alonso M
See More

Related Topics

Integration Techniques

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

01:36

Evaluate the integral. $$ \int_{0}^{2} y \sinh y d y $$

02:11

Evaluate the integral. $ \displaystyle \int_{-1}^1 \frac{e^{\arctan y}}{1 + …

06:45

Evaluate the integral. $\int_{0}^{1} \frac{y}{e^{2 y}} d y$

02:54

Evaluate the integral. $ \displaystyle \int ye^{0.2y} dy $

02:52

Evaluate the integral. $ \displaystyle \int ye^{0.2y} dy $

05:16

Evaluate the integral. $ \displaystyle \int \frac{y}{(y + 4)(2y - 1)}\ dy $

05:11

Evaluate the integral ? y^2 sin 8y dy

01:05

Evaluate the integral. $\int_{0}^{2}(y-1)(2 y+1) d y$

02:48

Evaluate the integral. $$\int_{0}^{x}(2 x-y) d y$$

01:32

Evaluate the iterated integral. $ \displaystyle \int_0^2 \int_0^{y^2} x^2 y\…

02:25

Evaluate the integral. $$ \int y e^{0.2 y} d y $$

02:49

Evaluate the integral. $ \displaystyle \int_1^4 \sqrt{y} \ln y\ dy $

00:45

Evaluate the integral. $ \displaystyle \int^3_1 \frac{y^3 - 2y^2 - y}{y^2} …

09:56

Evaluate the integral. $ \displaystyle \int_1^2 \frac{4y^2 - 7y - 12}{y (y +…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started