Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Evaluate the integral. $ \displaystyle \int_0^…

05:12

Question

Answered step-by-step

Problem 11 Medium Difficulty

Evaluate the integral.

$ \displaystyle \int_0^{\frac{1}{2}} x \sqrt{1 - 4x^2}\ dx $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 7

Techniques of Integration

Section 3

Trigonometric Substitution

Related Topics

Integration Techniques

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

03:07

Evaluate the integral.

…

05:40

Evaluate the integral.

…

04:49

Evaluate the integral.

…

03:35

Evaluate the integral.
…

01:46

Evaluate the definite inte…

00:55

Evaluate the integral.
…

02:21

Evaluate the integrals.

00:39

Evaluate the integral.

…

02:20

Evaluate the integral.
…

01:40

Calculus 2.

03:08

Evaluate the integral.
…

0:00

Evaluate the integral.

Watch More Solved Questions in Chapter 7

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44

Video Transcript

Let's evaluate the integral from zero to one half of X times the square root of one minus for X squared. You can actually do this problem using the U substitution, just like you would be the thing inside the square root. Let's not do that method here because this is seven point three. This's the trick substitution section. So let's do insurance substitution here. So, looking at the inside of the radical, we see that we have something that's very similar to a square minus X where except here. We just have a number in front of the X. That's not a big deal for us. If this was the substitution, you would normally take X to be a sign data sonar problem. We have one squared. So is one minus two eggs, all in parentheses square. So we should take the thing. The variable being squared, which is to X and said that equal to a which is one signed data. So that's their trick. Then we could differentiate first, I guess here you could just divide by two, and then we could differentiate T X is coastline data over to and because we're dealing with a definite enrol. We can go ahead and try to switch those limits in terms of data. But if we're going to do this, we have to make an observation here. And is that when you do a tricks up of this form when you sign, you have to put a restriction on data. And the restriction is that it's between negative power over too, and powerful too. This is actually gonna help us because they will let us find the new data values. So the original value lower limit was X equals zero. So now plug in X equals zero into this equation up here and saw for data. So we have zero equals scientific data over to this means sign a zero and the only time sign a zero in this interval appear is one date a zero. So this is our new lower limit. Similarly, we could find the new upper limit corresponding to one half. So let's behalf, then, plugging this into this circled red equation. Up here we have one half equal sign over too. This means sine equals one. And the only time that sign is one in this interval appear. Is that pie over too so data equals. Perhaps that's our new upper limit. So we can try to write this new integral in terms of NATO. So we have the General Zero pirate too. Next watch from over here We know that society data over to and let's go to the side and simplify this radical Here you have square room one minus four X squared In our case, let me come down here. This will be one minus four Science Where? Data over four. So we get Cancel those force We have one minus science Where which is co sign squared and a squirt of this is closing. So that's the radical. So we have times it has come down here co signed data and then we have DX which was co signed data over to later. So right now this is our new instagram. So it's separate this from our scratch work. We'Ll simplify this a little bit. I could pull out the four outside the integral The one fourth zero for two Now we have close eyes. Where? Time sign now since I'm running out of room Let's go. Let's pick this up on the next page we have one fourth in a girls, They're up to coastlines. Where? Time sign. Now this interval. We should go ahead and do a U substitution. Let's knew the coastline. Then negative. You will be scientific data and once again before with the definite local. So we should switch those limits. So data equals zero that corresponds to you. Nipples coastline zero people's one upper limit was fired too. So data equals Hi, Sue corresponds to U equals co sign too. And we know that zero. So after are you so we can write this as a negative one over four. The negatives coming from new substitution in enroll from one zero useful here to you. And if you don't like the fact that the lower limit is bigger than the upper limit, you could go on and switch the limits. And when you do so, that introduces a negative sign, and we could cancel with the negative sign that's already here. So you have one fourth in a girl's ear. The one you square, do you? And now we're ready to evaluate. Yeah, you're cute over as well. From one zero. Plug in those end points and we have won over twelve. And that's your final answer.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
71
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
49
Hosted by: Alonso M
See More

Related Topics

Integration Techniques

Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

03:07

Evaluate the integral. $ \displaystyle \int \frac{dx}{x^2 \sqrt{4x^2 - 1}} $

05:40

Evaluate the integral. $ \displaystyle \int \frac{1}{x \sqrt{4x^2 + 1}}\ dx $

04:49

Evaluate the integral. $ \displaystyle \int \frac{1}{x^2 \sqrt{4x + 1}}\ dx $

03:35

Evaluate the integral. $$ \int_{0}^{1 / 2} x \sqrt{1-4 x^{2}} d x $$

01:46

Evaluate the definite integral. $ \displaystyle \int^4_0 \frac{x}{\sqrt{1 +…

00:55

Evaluate the integral. $\int_{0}^{1} \frac{d x}{\sqrt{4-x^{2}}}$

02:21

Evaluate the integrals. $$\int_{0}^{1 / 2} \frac{4}{\sqrt{1-x^{2}}} d x$$

00:39

Evaluate the integral. $ \displaystyle \int^4_1 \frac{2 + x^2}{\sqrt{x}} \,d…

02:20

Evaluate the integral. $$ \int_{1}^{2} \frac{d x}{\sqrt{4 x-x^{2}}} $$

01:40

Calculus 2.

03:08

Evaluate the integral. $$ \int_{0}^{1 / 2} x \sqrt{1-4 x^{2}} d x $$

0:00

Evaluate the integral.
Additional Mathematics Questions

01:28

write the following statement as equations 6.four time a number minus twenty…

04:15

what is the measure of the angle of an isosceles trapezoid if two of the ang…

00:17

what is the probability of tossing 4 coins and getting tails on all four

02:26

When the function gets closer and closer to 5 as the variable gets closer an…

02:05

What do you call -2m in the quadratic equation m²?-2²m - 15 =0?a constant te…

03:10

1.a party planner has a limited party budget for an upcoming event .if the c…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started