Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Evaluate the integral. $ \displaystyle \int \s…

05:41

Question

Answered step-by-step

Problem 4 Medium Difficulty

Evaluate the integral.

$ \displaystyle \int_0^{\frac{\pi}{2}} \sin^5 x dx $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 7

Techniques of Integration

Section 2

Trigonometric Integrals

Related Topics

Integration Techniques

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

05:13

Evaluate the integrals.

08:09

Evaluate the integrals
…

08:29

Evaluate the integral.

…

07:38

Evaluate the given definit…

12:44

Evaluate the integral.
…

04:19

Evaluate the integrals.

04:01

Evaluate the integral.

…

00:42

Evaluate the definite inte…

0:00

Evaluate the integral
$…

Watch More Solved Questions in Chapter 7

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70

Video Transcript

this problem is from chapters Heaven Section to Problem number four of the book Calculus Early Transcendental Sze eighth Edition by James Door Here we have a definite a rule from zero up IRA to science to the fifth hour of ex DX. So the first thing we can do here is just rewrite this in a roll by pulling out one factor of sign. So by doing this will have science of the fourth power Becks Times, Santa picks D x. So here we have a science of the fourth power. So let's go to the side and make some observations here so we can rewrite signed to the four sides, squared x in the parentheses and we can evaluate this insider thing. See, in one minus to co sign Square Plus co sent to the four power so are integral becomes the integral from Sierra over, too. And we just replace that into the fourth with our latest expression over here on the right, So have a one minus to co sign square plus coastline to the fourth power times sine x dx. And here we should apply u substitution. Let's think you two be cause and effect so that to you is negative Sign X the ex We don't have this negative in front of the sign d x in our original integral. So we'LL make up for it by just putting a negative and argue so negative to you Eagles sine x dx. Another observation here is that we have a definite no girl. So since we're making a u substitution, the limits of integration will change. So originally X goes from zero to Piper too. So now that will change in our new variable You. So the starting value for you will be cosan zero, which is one and the upper limit for you will be co sign the power to which is zero. So now let's rewrite are integral using our new variable you So we change those limits of integration from two one and zero and we have a one minus to you square. Plus you know, the fourth to you. And let's not forget that minus sign in the front because we wanted negative, do you? Not just to you. So here before we integrate, we could just push this negative inside. So have a minus one plus two. You square minus you forth, do you? And now we could apply the power or three times. So we have a negative. You plus two, you cued over three, minus your of the fifth power over five. And our end points are one and zero. So when we played in zero first and for you, each of these three terms becomes a zero. So we have a zero minus, and now we plug in one for you. So have a minus. One plus two over three minus one over five, which becomes one minus two or three plus one over five. And here we could get a common denominator of fifteen, twelve, fifteen minus. So here we have the multiplied happened bottom of two over three by five. So we're gonna tent up there and then here on the one over five would multiply top and bottom by three. All over fifteen are denominator. And then we simple by this to get in over fifteen, and that's our answer.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
162
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
70
Hosted by: Alonso M
See More

Related Topics

Integration Techniques

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

05:13

Evaluate the integrals. $\int_{0}^{\pi} \sin ^{5} \frac{x}{2} d x$

08:09

Evaluate the integrals $$\int_{0}^{\pi} \sin ^{5} \frac{x}{2} d x$$

08:29

Evaluate the integral. $$\int \sin ^{2}(\pi x) \cos ^{5}(\pi x) d x$$

07:38

Evaluate the given definite integral. $$ \int_{0}^{\pi / 2} 15 \sin ^{2}(x) \co…

12:44

Evaluate the integral. $$\int_{0}^{\pi / 2} \tan ^{5} \frac{x}{2} d x$$

04:19

Evaluate the integrals. $$ \int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{5} …

04:01

Evaluate the integral. $ \displaystyle \int_0^{\frac{\pi}{2}} \sin^2 x \cos^…

00:42

Evaluate the definite integral. $ \displaystyle \int^{\pi/2}_{0} \cos x \si…

0:00

Evaluate the integral $$ \int_{-\pi / 2}^{+\pi / 2} \cos (5 x)-\sin (5 x) d x…
Additional Mathematics Questions

01:00

A normal distribution has a mean of 61 and a standard deviation of $15 .$ Wh…

01:02

If the mean of five values is 64, find the sum of the values.

03:53

In exercises 21-22, graph XYZ with vertices X(2,4) Y(6,0)and Z(7,2) and it’s…

03:48

A hydroelectric power plant takes in 30 m3/s of water through is turbine and…

02:48

Graph triangle RST with vertices R(-4,1),S(-2,2),and T(3,-2)and it’s image a…

03:00

The data that follow are the square footage (in 1,000 feet squared) of 28 ho…

01:22

Which composition of transformations maps triangle ABC to triangle DEF?

03:11

A $20-\mathrm{ft}$ Ferris wheel turns counterclockwise one revolution every …

01:05

Biologists conducted experiments to determine whether a deficiency of carbon…

02:04

Bouncing Golfball. A golfball is dropped from a height of 30 ft to the pavem…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started