Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Evaluate the integral. $ \displaystyle \int \f…

06:07

Question

Answered step-by-step

Problem 3 Medium Difficulty

Evaluate the integral using the indicated trigonometric substitution. Sketch and label the associated right triangle.

$ \displaystyle \int \frac{\sqrt{x^2 - 4}}{x}\ dx $ $ x = 2 \sec \theta $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 7

Techniques of Integration

Section 3

Trigonometric Substitution

Related Topics

Integration Techniques

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

04:14

Evaluate the integral usin…

04:10

Evaluate the integral usin…

03:32

Evaluate the integral usin…

04:47

Evaluate the integral usin…

05:44

Evaluate the integral usin…

07:26

Evaluate the integral usin…

08:13

Evaluate the integral usin…

04:46

Evaluate the integral usin…

03:29

Evaluate the integral usin…

03:21

Find the indefinite integr…

04:32

Find the indefinite integr…

03:13

Find the indefinite integr…

03:24

Find the indefinite integr…

Watch More Solved Questions in Chapter 7

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44

Video Transcript

here. We like to evaluate the integral using the indicated shrink. So here the tricks of his X equals to thicken, from which we conclude D X is to seek and data can dated data so we can rewrite this General. This becomes square root of X Claire so that X squared becomes foresee can square and then DX is to seek and data Santiago de Data. And in the Dominator we just have X which was to seek antenna. So already we see that we can cancel off these two thickens and then also before we go on, let's simplify this radical here so we could factor out a four there. So taking four out the square and becomes a too. And then we have sequence where they don't minus one, which is too radical chance for data, which is too thin data. So we have integral toothy and data time Stan Data and we can rewrite tangent squared, which is what we have here. Tan square Some first let's pull up the two and then we could write chance. Where is sequence where data minus one. And we know the inside derivative of seek and squared is tangent and then integral of one is just data. So we have a minus two data, plus he And now this is the point where we can use the right triangle to try to simplify further. So according to our original substitution, we have seek and data equals X over two. So our triangle may look something like this, right? Triangle. Here's data and since the sea can is except for two, we have two of the corresponding sides, and then we can use put agree and dirham to find the remaining side. Let's call it a JJ. We know that h flared plus two squared his X square, so h is equal to the square root of X squared minus four. So now we have all three sides of the triangle. So we have two times tangent of data. So attention of data. It's just opposite over adjacent, So H over too. So we have radical X squared minus four. That thing's divided by two on the outside of the radical minus two. And then they'd know we really can't get the value of data from the triangle or we can. But it's not necessary. You could just use this equation appear to find data. So take the university can on both sides and we get data is seek an inverse of X over too. So we're basically finished The last thing to do here, which I'll write up. It's just a cancel off these twos in the first expression. So I'll need to go to a new page for this. So we have square root, no explore minus four minus two. Seek and embers X over, too. Plus he and there's our answer.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
178
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
75
Hosted by: Alonso M
See More

Related Topics

Integration Techniques

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

04:14

Evaluate the integral using the indicated trigonometric substitution. Sketch an…

04:10

Evaluate the integral using the indicated trigonometric substitution. Sketch an…

03:32

Evaluate the integral using the indicated trigonometric substitution. Sketch an…

04:47

Evaluate the integral using the indicated trigonometric substitution. Sketch an…

05:44

Evaluate the integral using the indicated trigonometric substitution. Sketch an…

07:26

Evaluate the integral using the indicated trigonometric substitution. Sketch an…

08:13

Evaluate the integral using the indicated trigonometric substitution. Sketch an…

04:46

Evaluate the integral using the indicated trigonometric substitution. Sketch an…

03:29

Evaluate the integral using the indicated trigonometric substitution. Sketch an…

03:21

Find the indefinite integral using the substitution $x=2 \sec \theta$. $$ \int …

04:32

Find the indefinite integral using the substitution $x=2 \sec \theta$. $$ \int …

03:13

Find the indefinite integral using the substitution $x=2 \sec \theta$. $$ \int …

03:24

Find the indefinite integral using the substitution $x=2 \sec \theta$. $$ \int …
Additional Mathematics Questions

05:12

A rancher wants to create two rectangular pens, as shown in the figure, usin…

01:13

Consider a set of 7500 scores on a national test whose score is known to be …

03:50

(1 point) The velocity of a car is f(t) = 9t meters/second. Use a graph of f…

05:25

A Problem asked you to find the function absolute maximum and absolute minim…

07:42

The radius of a cylinder is increasing at rate of 4 cm /sec but its total su…

09:42

2. Determine the highest real root of f (x) 5x} 6x? + 11x 6.1 Graphically b;…

02:42

Imagine that professor of sociology has two teaching assistants (TAs) who wi…

02:59

15. The velocity of a passing train has to be determined: We measure the tim…

06:28

The total income for African American households of certain country making u…

04:45

point) rectangular storage container with an open top is to have volume of 1…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started