Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Get the answer to your homework problem.

Try Numerade free for 7 days

Like

Report

Evaluate the integrals.$$\int \cos ^{3} x \sin ^{4} x d x$$

$\frac{(\sin x)^{5}}{5}-\frac{(\sin x)^{7}}{7}+c$

Calculus 1 / AB

Calculus 2 / BC

Chapter 6

Integration Techniques

Section 3

Trigonometric Techniques of Integration

Integrals

Integration

Baylor University

University of Nottingham

Boston College

Lectures

01:53

In mathematics, integratio…

27:53

In mathematics, a techniqu…

00:37

Evaluate the integrals.

02:31

02:16

Evaluate the integrals…

00:40

01:27

03:43

Evaluate the following int…

01:28

02:42

01:48

12:49

Evaluate the integral.…

01:34

Evaluate the indicated int…

01:35

02:07

02:12

04:15

03:54

Use any method to evaluate…

03:12

03:52

Evaluate the integral.

01:56

01:17

Okay, so let's first notice that we have coastline and fine, so we could probably use a Yusoff. Okay, I noticed that we have coast and with the power three. So I want to rewrite that as it even power. So I'm gonna split this up into Coastline Square directs. Find your power four X and then we have Rimini coastline of X, the X. Okay, so in this case, I want are you to be sign of X because I want our derivative to be co sign of xcx. So we have using to sign of come to you in its coast, on your back, the X. So if I'm going to take you to be able to sign a max, I'm gonna want to rewrite this coastline in terms of sign. Well, thankfully, we have argued Agrium intensity that states that co six quarterbacks plus times great of actually which one so solving for sine we have or actually solving for close, fine have equal to one minus sine squared. So it's really that one minus sign square looks and then we have co sign. We're actually fine. There are four x e. And now let's replace what we have. I forgot. And we have a co signer by Yeah. Okay, so this is equal to one minus. You squared times you did about our four, and then we have Do you? Now it's one of my end. This use your power for Okay, I'll take in a robe. You have. You would just sign to the power of five X over five minus. Sign to the power of seven X over seven plus c. Okay, so we have the fall exclusion.

View More Answers From This Book

Find Another Textbook

Numerade Educator

In mathematics, integration is one of the two main operations in calculus, w…

In mathematics, a technique is a method or formula for solving a problem. Te…

Evaluate the integrals.$$\int \cos x \sin ^{4} x d x$$

Evaluate the integrals.$\int \cos ^{3} 4 x d x$

Evaluate the integrals$$\int \cos ^{3} 4 x d x$$

Evaluate the integrals.$\int \cos ^{3} x \sin x d x$

Evaluate the integrals$$\int \cos ^{3} x \sin x d x$$

Evaluate the following integrals.$$\int \sin ^{2} x \cos ^{4} x d x$$

Evaluate the integrals.$\int \sin ^{3} x \cos ^{3} x d x$

Evaluate the integrals$$\int \sin ^{3} x \cos ^{3} x d x$$

Evaluate the following integrals.$$\int \sin ^{3} x \cos ^{2} x d x$$

Evaluate the integral.$$\int \sin ^{2} x \cos ^{4} x d x$$

Evaluate the indicated integral.$$\int \sin x(\cos x+3)^{3 / 4} d x$$

Evaluate the following integrals.$$\int \sin ^{3} x \cos ^{3 / 2} x d x$…

Evaluate the following integrals.$$\int \sin ^{-3 / 2} x \cos ^{3} x d x…

Evaluate the integrals.$$\int \sin ^{4} x d x$$

Evaluate the integrals.$$\int_{\pi / 4}^{\pi / 3} \cos ^{3} x \sin ^{3} …

Use any method to evaluate the integrals.$\int \frac{\sin ^{3} x}{\cos ^…

Use any method to evaluate the integrals$$\int \frac{\sin ^{3} x}{\cos ^…

$ \displaystyle \int \frac{\sin x \cos x}{\si…

Evaluate the integral.$\int \sin ^{2} x \cos ^{3} x d x$

Evaluate the integrals$$\int \cos ^{3} x d x$$

01:24

Determine whether the two indicated parallelograms have the same area. (Exer…

00:50

Evaluate the integrals.$$\int \tan x \sec ^{3} x d x$$

01:01

Evaluate the indicated integral.$$\int \frac{x^{2}}{1+x^{6}} d x$$

04:04

Compute the are length $L_{1}$ of the curve and the length $L_{2}$ of the se…

06:28

Ignore air resistance.In the Flying Zucchini Circus' human cannonba…

01:39

Evaluate the definite integral.$$\int_{0}^{\pi^{2}} \frac{\cos \sqrt{x}}…

01:22

Evaluate the integral.$$\int \frac{3}{e^{6 x}} d x$$

01:12

Evaluate the integral.$$\int \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x$$

01:26

Evaluate the integral.$$\int \frac{x^{2}}{1+x^{6}} d x$$

03:40

Evaluate the integrals.$$\int \frac{1}{x^{2} \sqrt{16-x^{2}}} d x$$