Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Evaluate the limit, if it exists. $ \displays…

View

Question

Answered step-by-step

Problem 18 Easy Difficulty

Evaluate the limit, if it exists.

$ \displaystyle \lim_{h \to 0}\frac{(2 + h)^3 - 8}{h} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Leon Druch
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Leon Druch

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

03:35

Daniel Jaimes

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 3

Calculating Limits Using the Limit Laws

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Anna Marie Vagnozzi

Campbell University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

Evaluate the limit, if it …

01:38

Evaluate the limit if it e…

03:42

Use algebra to evaluate th…

01:22

Evaluate the limit, if it …

0:00

Evaluate the limit, if it …

03:19

Evaluate the limit if it e…

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66

Video Transcript

We want to evaluate the limit of this expression as H approaches zero. Now if we try to directly substitute zero in for H uh we are going to get the indeterminant form of a limit. We're going to get 0/0. Uh So let's let's see if that's really the case plugging in zero for H If H 02 plus zero is to two Cubed would be eight. Okay so let's just write it down real quick. Okay if we just substitute zero in for age we would get two plus zero, cute minus eight over Once again plugging in zero for age. So this would be zero. Well two plus zero is too 2 to the 3rd is eight. Eight subtract 8 0. So we would have zero up top over zero. So directly substituting in zero for H uh brings us to the indeterminate form of a limit. 0/0. So basically we didn't get anywhere. So in order to actually calculate this limit, we are going to have to expand the numerator. We're actually going to uh do two plus H. Two the third and which means two plus eight times itself. Three times we're going to actually expand this and see if that helps us find the limit now. Two plus H. Two. The third is going to be a plus 12 H plus six H squared plus H. Cute. So two plus h. two. The third is this expression right here, we still have to write down to -8 and that whole thing. The whole expression gets put over each H and the denominator and let me fix this. Just supposed to be an L. Right here. So let's clean it up just a little bit. Okay so the limit of this expression that's H approaches zero is equal to the limit of this expression as H approaches zero. Now we can do a little bit of simplifying. We have eight here. Subtract eight there so those aides will cancel. And so we really had the limit of 12 H plus six. Eight square plus H cube. All divided by H. As H approaches zero. Each of these terms has an H. Uh has an H. So we are going to factor out the greatest common factor which is H. So rewriting this limit after we factor out the greatest common factor of H. Out of the numerator. Uh Well the numerator can be rewritten As aged times 12 plus six H. Plus each to the second and that is all over. H. You can distribute the multiplication by this age. To confirm that this is equal to what we had 12 times H. Six H. Times ages 68 squared eight square times ages. H. Cute. So the limit of this expression equals the limit of this expression now equals the limit of this expression. Well we can cancel out these ages times and by H. In the uh numerator. And dividing by agent. The denominator. Let's cancel out those H. Is So now we just have to take the limit of this expression as a jew approaches zero and we can take the limit of this expression. Uh As H approaches zero simply by plugging into zero everywhere you ch so 12 plus six times +06 times H will approach the limit of six times zero as H approaches zero plus a squared zero square. So now we are actually able to sub directly substitute zero in for H into this expression. Well uh six times 000 square to zero. And so our limit is 12. So the limit of this expression as H approaches zero is equal to 12.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
178
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
75
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Anna Marie Vagnozzi

Campbell University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

Evaluate the limit, if it exists. $ \displaystyle \lim_{h \to 0}\frac{(2 + …

01:38

Evaluate the limit if it exists. $$ \lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{…

03:42

Use algebra to evaluate the limits. $$\lim _{h \rightarrow 0} \frac{(2-h)^{3}-8…

01:22

Evaluate the limit, if it exists. $$\lim _{h \rightarrow 0} \frac{(4+h)^{2}-16…

0:00

Evaluate the limit, if it exists. $ \displaystyle \lim_{h \to 0}\frac{(3 + h…

03:19

Evaluate the limit if it exists. $$ \lim _{h \rightarrow 0} \frac{(3+h)^{-1}-3^…
Additional Mathematics Questions

01:45

9: Standard Form and Factored Form Lesson Cool Down: From One Form to Anothe…

07:48

Consider tha following linear programming problem: Z= 250x+75y St 5x+Y<=1…

02:32

Determine whether the geometric series is convergent or divergent: If it is …

01:30

Determine the value of c so that each of the following functions can serve a…

01:12

An object is pulled along the ground by exerting a force of 50 pounds a rope…

02:11

point) If f is continuous and
f(x) dx = 20, find f(2x) dx:
Answer:

06:27

[f sin?(58) + cos?(M) = 1,then M equals (1) 32 (2) 58
(3) 68
An 8009 t…

01:28

If the mean of the sampling distribution of the means is 12.4, what is the m…

04:19

QUESTION 8 In a study of causes of power failures, these data have been gath…

01:53

ty' + 2y = 4t2 y(1) = 2 Find the solution of the initial value problem<…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started