Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Evaluate the limit, if it exists. $ \displays…

01:48

Question

Answered step-by-step

Problem 14 Easy Difficulty

Evaluate the limit, if it exists.

$ \displaystyle \lim_{x \to 4}\frac{x^2 + 3x}{x^2 - x - 12} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Leon Druch
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Leon Druch

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

03:24

Daniel Jaimes

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 3

Calculating Limits Using the Limit Laws

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Grace He
Catherine Ross

Missouri State University

Heather Zimmers

Oregon State University

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

Evaluate the limit, if it …

0:00

Evaluate the limit, if it …

03:09

Evaluate the limit, if it …

0:00

Evaluate the limit, if it …

06:30

Evaluate the limit, if it …

01:38

Find the indicated limit, …

02:37

Evaluate the limit, if it …

00:55

Evaluate the limit, if it …

01:09

Find the indicated limit, …

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66

Video Transcript

Okay, we want to find a limit of dysfunction as X approaches for now, when X equals for you would get four square at 16 minus four minus 12, which would end up being zero. So when X is four, the denominator here is zero and you can't divide by zero. But that's not a problem because when we take the limit of X approaching for X never actually gets to equal for X, just approaches for it's not going to equal for All right. Uh So what we're going to do to evaluate this limit? Um We're going to factor the numerator and we're going to factor the denominator and then see if we can cancel some common factors. So we are going to be taking the limit as X approaches for now looking at the numerator, X squared plus three X. Let's factor out the greatest common factor. Which would be X. So the numerator can be rewritten as X times X plus straight. If you distribute this multiplication, you can see X times X is X squared plus and then X times three is three X. All right, so that's going to get put over. Uh Well, X squared minus x minus 12. But we want to factor X squared minus x minus 12, X squared minus x minus 12. Well, factor Into X -4 times X plus. Straight. All right. So, we want to double check this. Uh you can use spoil x square there it is. Outer is three X. Inner is negative four X. They combined to give you a negative one X. There it is last term times last term negative four times three is negative 12. So X squared minus x minus 12 factors into x minus four times X plus straight. No, The X-plus three factors will cancel. Um we can cancel this X plus three and the denominator with the X plus three in the numerator. As long as X plus three uh is never equal to zero because you can't have a zero in the denominator, well, X plus three would equal zero when X is negative three, X is approaching four so we don't have to worry about X being negative three. So we cancel out these X plus three factors. So as X approaches for as X approaches for this, X term is going to approach for But this X -4 term Is going to approach zero. If X is approaching for an X -4 approaches for -4, which is zero. No, As X is approaching four from the right side of four, Meaning it's gonna be a little bit bigger than for X -4 is going to be a small positive number. For example, if x is 4.14 point one minus four is 40.1, So you would be dividing by .1. When you divide by a tiny number, you get a big number. So if you're dividing by a tiny positive number, you're going to get a large positive number. So as X approaches for when X approaches For from the right side of four from the positive side we say uh this limit is going to let's write it as X approaches for from the positive side, uh X Over X -4 is going to approach positive infinity. This is called the right hand limit. His ex is approaching four from the positive side. Uh This expression is going to approach positive infinity. Here's why as extras approaching for uh this X will approach for as extras approaching four from the positive side, the right side of four, meaning it's a little bit bigger than for something a little bit bigger than for -4 is still going to be positive. So for example, if once again, if X was like 4.1, -4 would be .1. And when we divide by .1 uh we're going to get large number. When you divide by a tiny number you get a large number dividing by .1 Is like times it by 10, dividing by .001 is like times and by 1000. So four divided by a tiny tiny positive number is going to be a very large positive number. So as X gets closer and closer to four from the right side of four, uh this expression is going to get larger and larger towards positive infinity. Now, however effects approaches for from the left side Of four, we call it from the negative side. For example, if X is approaching four from the left side, maybe X's 3.99 the next minus 43.99 minus four is negative 40.1. So then you got four being divided by negative 40.1, dividing by a tiny negative number, gives you a very large negative number. So as X approaches for from the left side, in this case We're going to have X over X -4 approaches negative infinity. So as we get closer to four from the left side of four, uh this expression is going to uh tend towards negative infinity, very large negative number. So when all said and done, this limit does not exist because as we approach four from the positive side, this expression goes to positive infinity. As we approach for from the left negative side, the expression goes towards negative infinity. So the limit does not exist. There is no number that this expression gets closer and closer to and also the right hand limit and the left hand limits do not agree. So this limit does not exist

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
65
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
43
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Grace He

Numerade Educator

Catherine Ross

Missouri State University

Heather Zimmers

Oregon State University

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

Evaluate the limit, if it exists. $ \displaystyle \lim_{x \to 4}\frac{x^2 +…

0:00

Evaluate the limit, if it exists. $ \displaystyle \lim_{x \to -3}\frac{x^2 +…

03:09

Evaluate the limit, if it exists. $ \displaystyle \lim_{x \to -3}\frac{x^2 +…

0:00

Evaluate the limit, if it exists. $ \displaystyle \lim_{x \to 2}\frac{x^2 - …

06:30

Evaluate the limit, if it exists. $ \displaystyle \lim_{x \to 2}\frac{x^2 - …

01:38

Find the indicated limit, if it exists. $$\lim _{x \rightarrow-2} \frac{4-x^{2}…

02:37

Evaluate the limit, if it exists. $$\lim _{x \rightarrow 4} \frac{x^{2}-4 x}{x…

00:55

Evaluate the limit, if it exists. $$\lim _{x \rightarrow 4} \frac{x^{2}-4 x}{x…

01:09

Find the indicated limit, if it exists. $$\lim _{x \rightarrow-2} \frac{x^{2}-4…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started