Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Explain, using Theorems 4, 5, 7, and 9, why the f…

05:22

Question

Answered step-by-step

Problem 26 Easy Difficulty

Explain, using Theorems 4, 5, 7, and 9, why the function is continuous at every number in its domain. State the domain.

$ G(x) = \dfrac{x^2 + 1}{2x^2 - x - 1} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Linda Hand
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Linda Hand

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

02:21

Daniel Jaimes

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 5

Continuity

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Grace He
Kayleah Tsai

Harvey Mudd College

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

Explain, using Theorems 4,…

03:44

Explain, using Theorems 4,…

0:00

Explain, using Theorems 4,…

03:47

Explain, using Theorems 4,…

03:47

Explain, using Theorems 4,…

0:00

Explain, using Theorems 4,…

05:22

Explain, using Theorems 4,…

05:24

Explain, using Theorems 4,…

05:21

Explain, using Theorems 4,…

03:47

Explain, using Theorems 4,…

03:47

Explain, using Theorems 4,…

01:52

Explain, using Theorems 4,…

03:47

Explain, using Theorems 4,…

06:13

$25-32$ Explain, using The…

0:00

Explain, using Theorems 4,…

03:47

Explain, using Theorems 4,…

01:06

$21-28$ Explain, using The…

01:05

$21-28$ Explain, using The…

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73

Video Transcript

Okay we're given a function. And the the initial question is um why is it continuous at every point in its domain? And then it has to find the domain. Well first you've got to make sure you know what domain means. So domain is the set of all numbers X. That you can put into this function so that a real number comes back out again. So is there any way you could put a number in there? A real number? So that an imaginary number comes out something with? I. No. Okay so that's not a problem. The problem is what if you put a number in and you got this? So some number over 0? Well some number over zero is undefined. That's not a number. Okay. So if there are any numbers that caused the bottom to be zero then they are not in the domain of this function. And if you think about graphing, if it makes the bottom zero then there's a vertical sm tote there. Okay and that's a that's a line that the graph can't cross. So to find the domain of this function you have to find out what X. Is. Make the denominator zero and then leave those out. Okay. Like this. Yeah. So I bet I can factor the bottom. If I can't I have to use the quadratic formula on it. Um Two X x minus one plus one. That gives me two X squared minus two X plus x. Okay that'll work. Okay. two x plus one X minus one. You can either say can't equal zero here or equal zero here because you're going to use the information in a minute. So X equals want and X equals minus one half. So domain is all real numbers except X equals minus one half And x equals one. So as long as you don't put those two numbers in there then this function is fine. But if you put those one or the other of those in there then this function causes this undefined thing to happen and so that those two things are not in the domain. Okay. Here's another way to write it because I'm sure it doesn't look like that in your book and it's easy if you put it on a number line. So it's all the numbers starting at minus infinity Up to -1/2 but don't include it together with so I'm gonna put a union sign there All the numbers on this side of -1 half. Up to the numbers up to the # one, so minus one half to one Together with all the numbers on this side of one up to positive infinity. Okay. Got says leave out minus one half and one because the round bracket means don't include. Okay, so this and this say exactly the same thing. All right. Now, why is this function continuous at every point in its domain. Okay, um let's look at this one. two x plus one is a line, X -1 is a line. Those two are continuous. When you multiply continuous functions you get a continuous function. Yeah, X squared plus one is a parabola that's continuous. When you divide a continuous function by a continuous function, it's continuous. So this function is continuous everywhere there is defined. Okay, so the rules I used, I don't know what numbers they are in your book, but that product product of continuous functions is continuous and quotient of continuous functions is continuous and um the fact that each of these three are continuous because they are, I don't know if you have one that's Paulino meals are continuous. Okay, hope that help.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
63
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
42
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Grace He

Numerade Educator

Kayleah Tsai

Harvey Mudd College

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

Explain, using Theorems 4, 5, 7, and 9, why the function is continuous at every…

03:44

Explain, using Theorems 4, 5, 7, and 9, why the function is continuous at every…

0:00

Explain, using Theorems 4, 5, 7, and 9, why the function is continuous at every…

03:47

Explain, using Theorems 4, 5. 7, and 9, why the function is continuous at every…

03:47

Explain, using Theorems 4, 5. 7, and 9, why the function is continuous at every…

0:00

Explain, using Theorems 4, 5, 7, and 9, why the function is continuous at every…

05:22

Explain, using Theorems 4, 5, 7, and 9, why the function is continuous at every…

05:24

Explain, using Theorems 4, 5, 7, and 9, why the function is continuous at every…

05:21

Explain, using Theorems 4, 5, 7, and 9, why the function is continuous at every…

03:47

Explain, using Theorems 4, 5. 7, and 9, why the function is continuous at every…

03:47

Explain, using Theorems 4, 5. 7, and 9, why the function is continuous at every…

01:52

Explain, using Theorems 4, 5, 7, and 9, why the function is continuous at every…

03:47

Explain, using Theorems 4, 5. 7, and 9, why the function is continuous at every…

06:13

$25-32$ Explain, using Theorems $4,5,7,$ and $9,$ why the function is continuou…

0:00

Explain, using Theorems 4, 5, 7, and 9, why the function is continuous at every…

03:47

Explain, using Theorems 4, 5. 7, and 9, why the function is continuous at every…

01:06

$21-28$ Explain, using Theorems $4,5,7,$ and $9,$ why the function is continuou…

01:05

$21-28$ Explain, using Theorems $4,5,7,$ and $9,$ why the function is continuou…
Additional Mathematics Questions

08:18

The result of an exam is given below
Out of 2000 students who appeared

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started