Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Express the integral as a limit of sums. Then eva…

02:40

Question

Answered step-by-step

Problem 30 Easy Difficulty

Express the integral as a limit of Riemann sums. Do not evaluate the limit.

$ \displaystyle \int^5_2 \biggl( x^2 + \frac{1}{x} \biggr) \, dx $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Stephen Hobbs
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Stephen Hobbs

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

02:02

Frank Lin

00:46

Amrita Bhasin

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 5

Integrals

Section 2

The Definite Integral

Related Topics

Integrals

Integration

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

0:00

Express the integral as a…

03:15

Express the integral as a …

0:00

Express the integral as a…

01:37

Express the integral as a …

0:00

Express the integral as a…

0:00

Express the integral as a…

09:09

Evaluate the integral by c…

06:55

Evaluate the integral by c…

0:00

Express the integral as a…

0:00

Express the integral as a…

0:00

Express the integral as a…

06:49

Evaluate the integral by c…

Watch More Solved Questions in Chapter 5

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75

Video Transcript

getting this integral as a limit of sums. We could go ahead and start off by putting the limit as our variable M approaches infinity. And then we're going to some from eyes one up to end. Now, the first thing that we calculate, we look at two and five and then we go ahead and do be minus a over and basically get like the width of each of our rectangles. B is five minus. A is to over end and this turns into three over end and so we could go ahead and put that out front of the sun there. And then the next thing we do is we start from the lower limit and then we add that amount with its i f component. And so from there we could go ahead and write that next part. As to which is just like we said, our lower limit, the starting amount Waas. This helps us find the width of the the, uh, rectangle here three i over. And now all of that is basically this and so that's why it needs to be squared. And then we have plus one over that same amount and so once you find what X is replaced with in one area the same thing in the next. Let's make sure we leave enough room there, so that'll be three I over and and then, lastly, the DX is replaced with a Delta X there. So basically, that's the idea except Delta X. We've already kind of written as this, and so that would be our final limit in this case here.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
192
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
82
Hosted by: Alonso M
See More

Related Topics

Integrals

Integration

Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

0:00

Express the integral as a limit of Riemann sums using right endpoints. Do not …

03:15

Express the integral as a limit of Riemann sums. Do not evaluate the limit. $$\…

0:00

Express the integral as a limit of Riemann sums using right endpoints. Do not …

01:37

Express the integral as a limit of Riemann sums. Do not evaluate the limit. …

0:00

Express the integral as a limit of Riemann sums using right endpoints. Do not …

0:00

Express the integral as a limit of Riemann sums using right endpoints. Do not …

09:09

Evaluate the integral by computing the limit of Riemann sums. $$\int_{-2}^{2}\l…

06:55

Evaluate the integral by computing the limit of Riemann sums. $$\int_{1}^{2} 2 …

0:00

Express the integral as a limit of Riemann sums using right endpoints. Do not …

0:00

Express the integral as a limit of Riemann sums using right endpoints. Do not …

0:00

Express the integral as a limit of Riemann sums using right endpoints. Do not …

06:49

Evaluate the integral by computing the limit of Riemann sums. $$\int_{0}^{2} x^…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started