Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Express the limit as a definite integral on the g…

02:42

Question

Answered step-by-step

Problem 18 Easy Difficulty

Express the limit as a definite integral on the given interval.

$ \displaystyle \lim_{n \to \infty} \sum_{i = 1}^n x_i \sqrt{1 + x_i^3} \, \Delta x $, [2, 5]


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Yuki Hotta
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Yuki Hotta

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

00:27

Frank Lin

00:20

Amrita Bhasin

01:01

Stephen Hobbs

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 5

Integrals

Section 2

The Definite Integral

Related Topics

Integrals

Integration

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

0:00

Express the limit as a de…

0:00

Express the limit as a de…

00:59

Express the limit as a def…

02:42

Express the limit as a def…

00:20

Express the limit as a def…

0:00

Express the limit as a de…

00:19

Express the limit as a def…

0:00

Express the limit as a def…

07:25

Express the limit as a def…

01:19

Express the given limit as…

00:26

Express the limit as a def…

02:28

Express the following limi…

00:16

Express the limit as a def…

0:00

Express the limit as a de…

Watch More Solved Questions in Chapter 5

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75

Video Transcript

All right, let's go ahead and do this problem. So the question ISS you're given the limit as an approaches to infinity. The some from Aiko's toe want to end off XVIII cleared of one plus x of Ike Uche Delta X okay and X is between two and five inclusive. What is the definite integral form off this expression? So the definite integral, the integral from a to B of ffx the the X this is defined to be the limit of a remonstrance. Some limit as angles to infinity off the some off I equals toe Want to end off f off X I using the same notation Delta X, where Delta X is equal to B minus a over and where the X is defined between. We need to be okay. So long story short. What's really happening here is that you have a region between a to B, and then you want to calculate the area under the curve using rectangles where this is the height and this is the width. Graphically speaking, this is what's going on. So it just doesn't example if I have a shape that looks like this. This is a this is B. I split it into a bunch of rectangles where this is f of X, Delta X is each of these width in the height is f off X I where the X I is each of these points. Okay, so we know that the area under the curve right here the approximation gets better and better the more rectangles we have. So if we use in rectangles, this is going to be the sum. But as we use the limit as an approaches to infinity, we're gonna have an exact match. So this is the definition off what the definite integral is. Okay, so all we need to do to really answer this question is to see how this is related to that expression right here. It all boils down into figuring out what the limit off the integration is. What effort X is, and de avec dx is usually just Delta X. So we don't need to worry about that part. So here the limit and the some we already know that part is just going to be this s portion of the integral. Now here, X, I is my input. We need to match this as my ex, I What is illegal too? Well, it's X I times the square root of one plus X I Q. Actually, not that difficult. It's exactly what it looks like. This portion becomes your Delta X. So when I multiply f of X, I with Delta X, I get this portion, which is the area under the curve. That's a rectangle. Okay, if we add them all up, it will be the definite integral. And we're taking the limit as and goes to infinity. So we know that it is going to be the exact answer. Now what is the what are the limits off the integration it's given right here? X is supposed to be from 2 to 5, so that is where we get the expression. The integration from 2 to 5 f of x is X square. Root off one plus x you and the exchanges to DX. And this is going to be the answer to this question.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
71
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
46
Hosted by: Alonso M
See More

Related Topics

Integrals

Integration

Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

0:00

Express the limit as a definite integral on the given interval. $$ \lim _{n \r…

0:00

Express the limit as a definite integral on the given interval. $$ \lim _{n \r…

00:59

Express the limit as a definite integral on the given interval. $ \displays…

02:42

Express the limit as a definite integral on the given interval. $ \displays…

00:20

Express the limit as a definite integral on the given interval. $$\lim _{n \rig…

0:00

Express the limit as a definite integral on the given interval. $$ \lim _{n \r…

00:19

Express the limit as a definite integral on the given interval. $$\lim _{n \rig…

0:00

Express the limit as a definite integral on the given interval. $ \displayst…

07:25

Express the limit as a definite integral on the given interval. $ \displayst…

01:19

Express the given limit as a definite integral

00:26

Express the limit as a definite integral on the given interval. $$\lim _{x \rig…

02:28

Express the following limit as a definite integral: $$\lim _{n \rightarrow \in…

00:16

Express the limit as a definite integral on the given interval. $$\lim _{n \rig…

0:00

Express the limit as a definite integral on the given interval. $$ \lim _{n \r…
Additional Mathematics Questions

00:52

A survey of random sample of 210 male teens and 228 female teens. ages 13 ye…

03:43

(10 marks) Drawing Straws= Four soldiers have to decide between themselves, …

02:48

! [ 1 J/s ~ln 1 { ! E ui~ 8 3 2 [ 88 Nls 1 1 L 1 } ! { J
8 ] 1
0 9 5 …

01:18

Determine whether the quantitative variable is discrete or continuous_
Ti…

00:47

9 Find the exact value.
tan 25 +tan 20
1-tan 25 tan 20

05:28

An equation of = hyperbola is given.
3y_x_9=0 Find the vertices, foci, an…

03:41

The engine in airplane has power curve approximated by 221 y = 5000 where I …

02:26

Q1 The length of time between breakdowns of an essential piece of equipment …

07:05

02 In a chemical processing plant it is important that the yield of a certai…

07:05

02 In a chemical processing plant it is important that the yield of a certai…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started