Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Express the number as a ratio of intergers. $ 5.…

07:01

Question

Answered step-by-step

Problem 55 Hard Difficulty

Express the number as a ratio of intergers.
$ 1.234 \overline {567} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 2

Series

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Catherine Ross

Missouri State University

Caleb Elmore

Baylor University

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

02:38

Express the number as a ra…

01:31

Express the number as a ra…

01:09

$51-56$ Express the number…

06:32

Express the number as a ra…

01:47

Express the number as a ra…

00:14

Simplify each ratio of fac…

00:57

Write the ratio in simples…

03:26

Express the number as a ra…

01:20

Express the number as a ra…

00:42

Write the ratio in two oth…

01:39

Write $57 \%$ as a ratio.<…

01:09

$51-56$ Express the number…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92

Video Transcript

let's express this given number as a ratio of imagers. This means we're looking for a fraction of the form peor que or pee and cure imagers and these air numbers of the farm, like zero one two and so on. And also the negatives of these numbers. So no fractions, no, no decimals or pies or anything like that. So now what we can do here is just start off by pulling out that one. And then I also pull out this two, three, four because it only appears once. And then we see that this five, six, seven will start repeating. So let's start that in a different color. Maybe so for the five six seven. So I'll put the three zeros before this because these three these first response are already being occupied by the two three and the four. So there's no reason to put a non zero year, and then we have our five six seven. But then after that we have another five six seven. So put another three zeros for the same reason. Thes three zeros here are being occupied by these three numbers, so I just want to put zeros there and then we could even go on more time. This time I would put nine zeros because the first nine positions have been occupied or this seven eight nine has been occupied in the previous step by these three terms here. And we can see that starting inside of these green print disease that this is when the pattern stars. This is the more interesting part of the problem. Here. You can see that the decimal is always moving three places in the left. So this is a global to saying that this is geometric and that were multiplying by one over ten cubed each time we're multiplying sense for multiplying by the same thing each time. This is geometric. And since we know that it moves to re decimal places to the left, that's the same thing, is dividing by ten three times. So this tells us that what they are is. So now let's go ahead and start writing rewriting these fractions, I can write this function here is two three for over a thousand. So let me just write that over ten cued and then inside the apprentices, we have five, six, seven over tens of six five six seven. And then since we mall supplied by this each time three to the left Well, the nine there and so on. And here I should have put the dots to indicate that that some continues. So again, the first term I had put a six on the bottom there because we're going all the way out. This is six places after the decimal. So since this is a geometric series, we can go out and actually find us some here for this This lawyer, some inside the apprentices. We know that for a geometric series, the sun just equals you. Take the first term in the Siri's and then you just divide by one minus R So this lets me, right? This is one plus two, three, four over. Thank you. If there's just the first two terms from over here and then using this formula at the first term in the series, we can see that just by looking at it here. Five, six, seven, ten to the sixth. And then I divined by one minus. R and R is one over Thank Yu tw now, since I am running out of room here, let me go ahead and write this On the next page, we have one plus two thirty for over ten. Cute and then five six seven over. Sense of the six one minus one over thin. Cute. We could go ahead and just re write the first two, and then we can rewrite thiss, get a common denominator there, and then we have, after canceling appear. And then maybe we can add these two fractions first, eight, six, seven, nine. Thirty seven thousand and then get another common denominator here. So forty five thousand six hundred seventy nine over thirty seven thousand, and that's your final answer.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
180
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
79
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Catherine Ross

Missouri State University

Caleb Elmore

Baylor University

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

02:38

Express the number as a ratio of integers. $1.234 \overline{567}$

01:31

Express the number as a ratio of integers. $$7 . \overline{12345}$$

01:09

$51-56$ Express the number as a ratio of integers. $$1.234 \overline{567}$$

06:32

Express the number as a ratio of integers. 1.53$\overline{42}$

01:47

Express the number as a ratio of integers. $0.46=0.46464646 \ldots$

00:14

Simplify each ratio of factorials. $$\frac{9 !}{7 !}$$

00:57

Write the ratio in simplest form. 77 to 55

03:26

Express the number as a ratio of integers. $5 . \overline{71358}$

01:20

Express the number as a ratio of integers. $$0 . \overline{73}=0.73737373 \ldot…

00:42

Write the ratio in two other ways. 3 to 7

01:39

Write $57 \%$ as a ratio.

01:09

$51-56$ Express the number as a ratio of integers. $$7 . \overline{12345}$$
Additional Mathematics Questions

02:33

ABC Corp's 2019 ROE dropped fifty percent from 2018. If the reason was …

01:02

An Accenture consulting team is tasked with developing a new client operatin…

02:07

A San Diego partner's father lives in San Diego. The partner does not …

00:54

A member has been asked to co-sign checks with a client employee while the c…

03:27

How can a company show positive Net income but go bankrupt?

01:37

Joseph Mancino can purchase a $6,000-per-year health insurance policy for hi…

01:46

Master Pasta, Ltd., has projected a sales volume of Rs. 1,432 lakhs for the …

03:05

The annual accounts payable is 4,800; the annual revenue is 75,000, and the …

03:44

Your boss asks you to compute your company's cash conversion cycle. Loo…

01:35

How to value stocks using multiples Stock Valuation and PE, The Perfect Rose…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started