Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

For what values of the numbers $ a $ and $ b $ do…

06:27

Question

Answered step-by-step

Problem 73 Hard Difficulty

Find a cubic function $ f(x) = ax^3 + bx^2 + cx + d $ that has a local maximum value of $ 3 $ at $ x = -2 $ and a local minimum value of $ 0 $ at $ x = 1 $.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Fahad Paryani
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Fahad Paryani

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 3

How Derivatives Affect the Shape of a Graph

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Anna Marie Vagnozzi

Campbell University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

03:45

Find a cubic function $f(x…

0:00

Find a cubic function $f(x…

02:58

Find all values of $x$ tha…

04:42

Find all values of $x$ tha…

06:09

Find all values of $x$ tha…

02:19

Show that $f(x)=x^{3}+b x^…

01:01

Find the quadratic functio…

01:32

Find all values of $x$ tha…

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92
Problem 93
Problem 93

Video Transcript

All right, So we're being told to find a cubic function f of x equals X cubed, possibly x squared. Plus the 8. 50 that has a local max of three at X equals negative two in a local men of 0 64 1. So that's all the information we're given. So the first thing we want to do is take the derivative. So we want to take the derivative of primer back, and this will give us three a x squared plus b not B expert going to be to be xr to be x plus c. And so, um, the reason I took the derivative is because we're told some information about the derivative. Believe it or not, we're told that the local Max, um, and a local men So what is the local Max and local men means that there has to be a point at local maximum ensures that F prime is equal to zero. So we're told that at these values, negative two and one, So I have prime of negative. Coup is equal to f prime of one because that's when we have a local max. So when a local massacres, when it goes like this or in the local ministers like this. But both have a derivative zero. So we know that this fact is true. Mm. So what do we do now? We Well, we can just plug in our values into X for F prime. So we get three a, then you get negative. Two squared. No, no. Um, no, no, I'm sorry. This is going to be, uh So what? We're going? Yeah. So we're going to plug in. We're gonna plug these numbers into, uh, X right here. So we're gonna get three a and the negative two squared, plus, um, to be and then negative too. And then plus C and then we're gonna plug in one. So for one, we just get three a plus two b plus c. And then once you simplify this, you get 12 a minus four b equals three. A push to be because the sea is canceled. And now we can solve for either air B. I solve for B in this case. So he's all for B. You get three have. Hey, so now we what we do as we, um we know that f prime of one. So I'm gonna go ahead and put in red. So this is our second step. So we know that f prime of one is equal to zero. Yeah. And so what we're gonna do is we're gonna set, um three a X squared, just to be x plus C equals zero. So equal zero. And we're gonna plug in one. So this is going to come out to be, um, zero. It's equal to three. A plus to be. Let's see. Well, I'm gonna bring this on to the next page. I'm gonna rewrite this so it's gonna be zero. Is he called. I'm gonna go ahead and continue the red color to show are different. Step Oops, sorry. Zero is equal to three. Um, a plus to be plus c now, reminder. We saw for B so we can actually plug in or Newbie. So zero goes three a plus, two times, 3/2 a and m plus c. And now what we can do is we can just all for C galaxy is gonna give us negative six A. So now I'm gonna circle some of the important, um, constant. So we have b go to three half a and see you to go the negative six a. Now we're gonna move on to another step, and that is f of negative two. So what we're going to do so have a negative too. Now that we know the values of, um hey, we can actually go ahead and start plugging this into our original function. I mean, we know the value of B and C, so we're gonna go ahead and start plugging this into our original function. Yeah, so we're going to get f of negative two. So that's gonna give us negative tube cube times a and then plus negative two squared and in times be would be is three half a and then we're gonna get Plus, this is gonna be negative two times, see, and then plus D. And this is equal to three because this is told to us effort at X equals negative two. We get three mhm. We're going to hold on to this value right here and now we're going to solve for f of one so half of one. Well, that's going to be a plus three half a, which is our B. But now it's three half a rewritten then plus C and then plus D. And now this can be rewritten as five half a, um, plus the plus d and this is all equal to zero. Then we also know that f of negative two. You can also, um, So what we can also do now is we're going to do, um, f of negative two minus f of one. And that's gonna give us three minus zero, which is still equal to three. So f of two minus f uh, one. This is delicate three. And then this is equal to negative to a minus five. Half a managed to see minus c. So I did some substitution here. Um, Now we can get another value for See that we can rewrite to see negative one minus three, half A. We also know. So now we have to seize. Now that we have to seize, we cannot just solve for what number A is. Remember, we succeed equal to negative six A. So now we have two versions of C, so we can say negative. Six a is equal to negative one minus three half. Okay. And if you saw for this, you get a you go to to ninth. Wow. So Oh, that's great. Um, now we know a So now that we know A we also know that B is equal to three half times a so three half and then we know we just saw for a is 29 to 9. So you get 39 which is just one third. So now we don't be well, now that we know what B is and we know what a is Remember, let's see what's equal to negative six a. And we know what a s a negative six time to ninth and that comes out to be negative for third. So now we have a B A B N c. And to find what D is we can There's a There's a number of ways to do this. I'm just gonna do the simple one. So everyone which is a B plus a plus B plus C plus d, which is gonna be to ninth plus one third and then she is negative. So it's me minus four third and then plus D and we know that everyone is equal to zero. And if you saw for D, you got 7/9. So now we have salt for A B and A, B, C and D. And if you plug in those values into our original function, I mean to our original form, that is the cubic function.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
142
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
68
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Anna Marie Vagnozzi

Campbell University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

03:45

Find a cubic function $f(x)=a x^{3}+b x^{2}+c x+d$ that has a local maximum val…

0:00

Find a cubic function $f(x)=a x^{3}+b x^{2}+c x+d$ that has a local maximum val…

02:58

Find all values of $x$ that make the function $f(a)$ a local minimum and $(b)$ …

04:42

Find all values of $x$ that make the function $f(a)$ a local minimum and $(b)$ …

06:09

Find all values of $x$ that make the function $f(a)$ a local minimum and $(b)$ …

02:19

Show that $f(x)=x^{3}+b x^{2}+c x+d$ has both a local maximum and a local minim…

01:01

Find the quadratic function $f(x)=a x^{2}+b x+c$ that goes through $(0,1)$ and …

01:32

Find all values of $x$ that make the function $f(a)$ a local minimum and $(b)$ …
Additional Mathematics Questions

03:03

n1+ Assume A = {()" In e N} < €with regular addition: Then,…

02:32

local grocery store has asked you t0 examine the probability choosi…

02:20

Problem 1 Assume that we have the following data
X = {X1,X2,
…

05:52

Please show your work.

A researcher believes that the number af homi…

02:33

Question 4 [5 Marks]
According to a survey, an employee in an organizatio…

02:56

colony of ants has a unlimited supply of food and resources. If there ar€ in…

00:55

This is a Algebra math question. If you can please help solve
the problem…

02:43

Leah can bicycle 75 miles in the same time as it takes her to walk 21 miles.…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started