Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find (a) $ f + g $, (b) $ f - g $, (c) $ fg $ and…

04:24

Question

Answered step-by-step

Problem 31 Hard Difficulty

Find (a) $ f + g $, (b) $ f - g $, (c) $ fg $ and (d) $ f/g $ and state their domains.

$ f(x) = x^3 + 2x^2 $ , $ g(x) = 3x^2 - 1 $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Heather Zimmers
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Heather Zimmers

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

03:45

Jeffrey Payo

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus 3

Calculus: Early Transcendentals

Chapter 1

Functions and Models

Section 3

New Functions from Old Functions

Related Topics

Functions

Integration Techniques

Partial Derivatives

Functions of Several Variables

Discussion

You must be signed in to discuss.
Top Calculus 3 Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 3 Courses

Lectures

Video Thumbnail

04:31

Multivariate Functions - Intro

A multivariate function is a function whose value depends on several variables. In contrast, a univariate function is a function whose value depends on only one variable. A multivariate function is also called a multivariate expression, a multivariate polynomial, a multivariate series, or a multivariate function of several variables.

Video Thumbnail

12:15

Partial Derivatives - Overview

In calculus, partial derivatives are derivatives of a function with respect to one or more of its arguments, where the other arguments are treated as constants. Partial derivatives contrast with total derivatives, which are derivatives of the total function with respect to all of its arguments.

Join Course
Recommended Videos

01:09

Find (a) $f+g,$ (b) $f-g,$…

02:07

Find $f+g, f-g, f g,$ and …

0:00

Find (a) $f+g$, (b) $f-g$,…

01:28

Find $f+g, f-g \cdot f g,$…

02:24

Find $f+g, f-g, f g,$ and …

02:26

Find $f+g, f-g, f g,$ and …

Watch More Solved Questions in Chapter 1

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66

Video Transcript

here we have functions. F N g. So let's start by finding F plus g. So we're going to add these functions together. X cubed plus two X squared plus three X squared minus one. We can add the like terms and we get X cubed plus five X squared minus one Breath plus G for F minus. G will subtract them. So we have X cubed plus two X squared, minus the quantity three X squared minus one. And so let's distribute the negative sign to have X cubed plus two X squared minus three X squared, plus one. And then let's combine like terms and we have X cubed minus X squared plus one and thats f minus g. Now let's look at the domains so F and G or both polynomial functions and polynomial functions always have a domain of all real numbers, which we can write as negative infinity to infinity. And when you add or subtract functions, the domain of the new function will be just the intersection of the two separate functions, and the intersection of all real numbers and all real numbers is all real numbers. All right, now, let's take a look at the product and the quotient. So if we multiply f and G X cubed plus two x squared multiplied by three X squared minus one, we might want to multiply that out so we'll use the foil process will multiply the first and we get three X to the fifth Power the outsides and we get minus X cubed the insides and we get plus six x to the fourth power and the last time I get minus two x squared. And if we want to rewrite that in descending powers of X, we get half times X equals three x to the fifth power plus six x to the fourth power minus X cubed minus two X squared. Now let's find the quotient of F over G. So we have X cubed plus two x squared over three X squared minus one. That's about all we can do with that one. Now let's talk about the domains. So again, the domain of F was all real numbers, and the domain of G was all real numbers. And when you multiply them, you still get the intersection of the domains. So you get all real numbers again. Now something changes when we divide, though, because we can't divide by zero. We need three X squared minus one to not be equal to zero. So what would make that equal zero if three X squared equaled one. So if X squared equals 1/3 So if X was plus or minus the square root of 1/3 then we would have a problem. We would have zero on the bottom. So we're going to say, for the domain is all real numbers except X equals plus or minus square 1/3. So I'll just say X is not equal to plus or minus square root 1/3.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
178
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
75
Hosted by: Alonso M
See More

Related Topics

Functions

Integration Techniques

Partial Derivatives

Functions of Several Variables

Top Calculus 3 Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 3 Courses

Lectures

Video Thumbnail

04:31

Multivariate Functions - Intro

A multivariate function is a function whose value depends on several variables. In contrast, a univariate function is a function whose value depends on only one variable. A multivariate function is also called a multivariate expression, a multivariate polynomial, a multivariate series, or a multivariate function of several variables.

Video Thumbnail

12:15

Partial Derivatives - Overview

In calculus, partial derivatives are derivatives of a function with respect to one or more of its arguments, where the other arguments are treated as constants. Partial derivatives contrast with total derivatives, which are derivatives of the total function with respect to all of its arguments.

Join Course
Recommended Videos

01:09

Find (a) $f+g,$ (b) $f-g,$ (c) $f g,$ and (d) $f / g$ and state their domains. …

02:07

Find $f+g, f-g, f g,$ and $f / g$ and their domains. $$f(x)=x^{2}+2 x, \quad g(…

0:00

Find (a) $f+g$, (b) $f-g$, (c) $f g$, and (d) $f / g$ and state their domains. …

01:28

Find $f+g, f-g \cdot f g,$ and $f / g$ and their domains. $$ f(x)=x-3, \quad …

02:24

Find $f+g, f-g, f g,$ and $f / g$ and their domains. $$f(x)=x^{2}+x, g(x)=x^{2}…

02:26

Find $f+g, f-g, f g,$ and $f / g$ and their domains. $$f(x)=3-x^{2}, \quad g(x)…
Additional Mathematics Questions

02:14

Two cubes each with side 15 CM are joined end to end to form a cuboid find t…

04:12

show that the points (a, b+c) , (b,c+a) and (c, a+b) are colinear.

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started