Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find at least 10 partial sums of the series. Grap…

05:44

Question

Answered step-by-step

Problem 11 Easy Difficulty

Find at least 10 partial sums of the series. Graph both the sequence of terms and the sequence of partial sums on the same screen. Does it appear that the series is convergent or divergent? If it is convergent, find the sum. If it is divergent, explain why.
$ \displaystyle \sum_{n = 1}^{\infty} \frac {n}{\sqrt {n^2 + 4}} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 2

Series

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Heather Zimmers

Oregon State University

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

07:14

Find at least 10 partial s…

04:20

Find at least 10 partial s…

03:08

Find at least 10 partial s…

05:44

Find at least 10 partial s…

07:39

Find at least 10 partial s…

02:37

Find at least 10 partial s…

01:41

$3-8$ Find at least 10 par…

01:13

$3-8$ Find at least 10 par…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92

Video Transcript

Let's find atleast ten partial sums of the series. So that's s one. For example, we could do the first ten partial sons, so and of course, doing more will only help us. And then we'LL graph the sequence of terms. So that's a one through eight ten. Who are here? A n is given by this formula, and we know by definition of S n that's just the sum of the first and values of a. So now let's go ahead and go to our calculator. So he over and Dez Mel's graphic calculator and we see our formula for and the in term of the sequence is given by the fraction. And then I've plotted the song. The first ten partial sums So capital and is going from zero R Excuse me one to ten, and then I go ahead and compute the partial sums. And here's the graph. The first quarter. This is the end for the end, partial some, and then the right corner is the sum. So this is saying yes. One is approximately point four four seven because of the Pier one comma point for for seven, and similarly we have all the way up to yes, ten. So a poi six for six so we can go ahead and write all the numbers in between the one in the tent and here. If you want to pause the screen here, all the values as one as too, and we can see that they're increasing. And then we have us ten. So we've done to task here. We've found the first ten partial sums approximations, and then we have a graph. This red graph is the graph of the partial sums. So coming back to the problem, we found the first ten partial sons, and we also graft the sequence of partial sums. Now let's go ahead and Graff the sequence of terms. So that's cracking the A's. So let me temporarily just remove the red graph and then let's go ahead and graph and purple there. We have the terms, and if you want to get even, label those. Let's not label. That's not going to help. So here it looks like the ends are getting closer and closer to one. And now let's go ahead and Graff the sequence and the series in the same graph. So purple is a N in the red is Essent, and we can see that the bread graph looks like it's going. You keep increasing all the way up to infinity, whereas the purple graph is getting closer is the one. So now, based on a graph, does it appear that the Siri's converges or diverges based on the graph, it looks diversion? And now if it is that virgin, explain why? Well, in this Siri's diverges bye, they're diversions test. So to show this will just show that the limit as and goes to infinity of a n is not zero. So here I'LL rewrite this denominator. I just pulled and squared out of the radical and I factored it out first. And then I pulled it off the radical. So I know the squared of and square is just end. So this will cancel with that. And then as n goes to infinity, this term goes to zero. So we just have one over radical one equals one, but this is non zero. So by the divergence test, the limit of a N is non zero. That means that the Siri's diverges So that's our final answer

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
180
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
79
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Heather Zimmers

Oregon State University

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

07:14

Find at least 10 partial sums of the series. Graph both the sequence of terms a…

04:20

Find at least 10 partial sums of the series. Graph both the sequence of terms a…

03:08

Find at least 10 partial sums of the series. Graph both the sequence of terms a…

05:44

Find at least 10 partial sums of the series. Graph both the sequence of terms a…

07:39

Find at least 10 partial sums of the series. Graph both the sequence of terms a…

02:37

Find at least 10 partial sums of the series. Graph both the sequence of terms a…

01:41

$3-8$ Find at least 10 partial sums of the series. Graph both the sequence of t…

01:13

$3-8$ Find at least 10 partial sums of the series. Graph both the sequence of t…
Additional Mathematics Questions

02:00

Ja f) dz = 13, f(z) dr = 9, J" 9) dx = -1, K g) d. ==1l; Use these valu…

03:51

(5 points) Consider the sequence
an
8n2 1008n + 55
This sequence is…

01:09

forecaster has constructed the following regression model to forecast sales …

01:02

Question 12
5 Pts"
Assume you have the - following data which Biv…

03:11

For given fuzzy number
A={(3/0.41.(4/0.6)(3/0.8)(4/1)}: B = {(2/0.7).(3/1…

10:51

For items 18-20,refer to the problem below: A resistance of 2000 ohms and a …

01:25

A boat heads directly north across a river; 68 m wide at a rate of 3 mls. Th…

03:23

Which score has the better relative position: a score of 52 on a test for wh…

02:21

Angle x is in the second quadrant and angle y is in the first quadrant such …

04:15

Mr, Jones requires - high long acting nitroglycerin to prevent chest paln: T…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started