Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the absolute maximum and absolute minimum va…

09:09

Question

Answered step-by-step

Problem 49 Medium Difficulty

Find the absolute maximum and absolute minimum values of $f$ on the given interval.

$ f(x) = 2x^3 - 3x^2 - 12x + 1 $, $ [-2, 3] $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Oswaldo Jiménez
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Oswaldo Jiménez

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

02:58

WZ

Wen Zheng

00:42

Amrita Bhasin

03:28

Chris Trentman

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 1

Maximum and Minimum Values

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

11:12

Find the absolute maximum …

02:27

Find the absolute maximum …

01:40

Find the absolute maximum …

03:02

Find the absolute maximum …

05:03

Find the absolute maximum …

02:18

Find the absolute maximum …

01:46

Find the absolute maximum …

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80

Video Transcript

we want to find the absolute minimum and absolute maximum values of the function F of x equal to x cubed minus three X squared minus 12 X plus one on the interval Added to three. Which is a closed interval. So the first thing we got to notice is that F attains that those extreme values that is its absolute minimum and it's absolute maximum values on this interval because interval schools and the function is continuous because simple normal function. So we know that those extreme value exists. But besides that we know that uh those extreme values are images of either the end points of the interval or critical numbers as a function. So we got to start by calculating too Critical numbers of the function for that. We need the first derivative and that is equal to six x Square -6 X -12. And we'll see that this derivative exists for every value X in the interval negative 23. And for that reason the only critical numbers f king half are those files of X. For which the derivative is equal to zero. So yeah. Mhm. And then we get a start by solving the equation After relative equals zero. And that's the same thing as six X squared minus six. X minus 12 equals zero because the relative discretion here and that's the same as six times X square minus x minus two equals zero. And because he six is not no longer we can say this is the same as x square- X -2.0. And we can factor out this polynomial S X minus two times X plus one in that equal zero. And this product series either as a factory zero, so X is two or X is negative one. And these two values in this case are both in the interval negative 23. So they are they're both has to be considered. Then the two critical numbers of F In the interval netted 2, 3 are two and 81. So we got to find the images of these two critical numbers and the images of the end points of the interval. F at let's say negative too is equal to two times negative two cube minus three times Native to square minus 12 times -2 Plus one. And if we calculate all these we get negative three, that's the image of the left hand point negative two. Now the image of the writing 20.3 is to attend three Cube -3 times three square mm hmm minus 12 times three Plus one. And that give us -8. And now we have a late at the critical numbers so F two, he is two times two Q minus three times to square minus 12 times two plus one. There is negative 19. And finally f at the other critical number 91 is two times negative one cubed minus three times negative one square minus 12 times negative one plus one. And that give us and eight. Mhm. So the largest value of these four is eight with the absolute maximum of f over the interval. Native to three and the smallest Of the virus is -19. Okay. So this is -19. And see absolute minimum of the function over the interval. So we got that answer then if has an absolute minimum value 80 negative 19. Which accor's at uh to which is one of the critical numbers at the critical number. Okay, mm It's equal to and f has an absolute maximum value, maximum value we said eight. And that value of course At -1 which in fact is the other critical number at the critical number Ux x equals 91. So this is an example where the the two extreme values of the function happened or a core at the critical numbers inside the close interval. So this is the final answer and then propping all with it here. First thing we noticed that the extreme values of the function exists because the function is continuous and defined on a close interval. And we know those extreme values are images of either the end points of the interval or critical numbers of the function we find the derivative and because that derivative exists at every point or a number in the close interval. So the only critical numbers of the functions are those surveyed for which the relative is zero. We solve that equation derivative of ethical zero. We stick with the solutions that are inside the close interval In this case both of them are so we have a lady function at two critical numbers, we found, and the end points and the largest Value of these four values is the absolute maximum of the function over the interval on the smallest of the values is the absolute minimum value of the function on the into. So this is a final answer to this problem yeah.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
151
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
68
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

11:12

Find the absolute maximum and absolute minimum values of $f$ on the given inter…

02:27

Find the absolute maximum and absolute minimum values of $f$ on the given inter…

01:40

Find the absolute maximum and absolute minimum values of $f$ on the given inter…

03:02

Find the absolute maximum and absolute minimum values of $f$ on the given inter…

05:03

Find the absolute maximum and absolute minimum values of $f$ on the given inter…

02:18

Find the absolute maximum and absolute minimum values of $f$ on the given inter…

01:46

Find the absolute maximum and minimum values of $f$ on the given closed interva…
Additional Mathematics Questions

01:33

find whether root 2, 3 root 2 is a solution of x - 3y = 9 or not

01:15

Last year, there were 720 crimes committed in the ninth precinct. these crim…

00:41

find two numbers between 100 and 150 that have an HCF of 24?

01:52

Find the area of a field which is in the shape of a trapezium having paralle…

02:35

Length of minute hand and the hour hand of a clock are in the ratio 4:3. fin…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started