Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

If $a$ and $b$ are positive numbers, find the max…

01:13

Question

Answered step-by-step

Problem 62 Hard Difficulty

Find the absolute maximum and absolute minimum values of $f$ on the given interval.

$ f(x) = x - 2 \tan^{-1} x $, $ [0, 4] $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Oswaldo Jiménez
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Oswaldo Jiménez

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

01:51

WZ

Wen Zheng

00:52

Amrita Bhasin

04:06

Chris Trentman

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 1

Maximum and Minimum Values

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Caleb Elmore

Baylor University

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

02:37

Find the absolute maximum …

02:22

Find the absolute maximum …

03:31

Find the absolute maximum …

16:40

Find the absolute maximum …

03:42

find the absolute maximum …

08:05

Find the absolute maximum …

01:11

Find the absolute maximum …

02:41

Find the absolute maximum …

01:03

Find the absolute maximum …

05:03

Find the absolute maximum …

01:29

Find the absolute maximum …

11:47

Find the absolute maximum …

05:56

Find the absolute extrema …

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80

Video Transcript

let's find the absolute minimum, an absolute maximum values of the function F of x equals x minus two, inverse of the tangent function on x defined on the close interval 04. So first we note that these functions continues over the interval 04. And that because the function universe of the tangent is defined on the real numbers and continue on the real numbers. So it's particularly continue defining continues on the interval 04. Remember that if we uh constrain the tangent function to the domain negative by half by half open interval both sides, then we have in verse well defined. Which is the function that we call tangent to the negative one of X, which is the inverse of the tangent function, which is then like this. So, as we can see, this function is defined and continues under real numbers. Well, so let's say here this is attendant to a negative one of eggs. So f being continuous and defined on a close interval, it attained its extreme values on that interval. And we know that those extreme values can be attained either on the end points of the interval or at critical numbers of the function F. So we get to start by calculating the first derivative of F, Which is 1 -2 times the derivative of the inverse of the tangent function of X is one over one plus six square. So this is equal to 1 -2 over one plus x square. And that's equal to one plus x square as a common denominator. In the numerator we have one plus x square minus two. So the first derivative of f is equal to x square minus one over x square plus one. And uh the denominator we have in this expression is never cereal. In fact it's always positive X square plus one. And so we have that these derivative exists for every uh X in the close interval 04. For that reason we can say that The only critical numbers of f in the interval 04, our total this effects in that interval for which the first derivative is equal to zero. And so we get to solve this equation here and we start with that equation. And because we know this first derivative is equal to the expression here is equivalent to saying that x squared minus one over x square plus one is equal to zero. And this is the same as s square plus one. Sorry, X squared minus one equals zero. That is a square equal one. And from here we know that it's can be negative one, or x can be one, but in this case The Value Native one is not In the interval 04. Then we can say that the only critical number of the function F In the interval 04 is X Equal one. So we have this Google number and the end points of the intervals as candidates for the function attained its extreme values. So we can say that F at the left zero is 0 -2, Inverse of the tangent function at zero. And because the tangent of 00, we get this is equal to zero. And at the writing .4 the function is able to form -2. Universal detergent at four. And is a calculator. We found that these values are approximately equal to one 34 83, 64, 6, 7, 2, 7. And finally F at the critical number x equal one is one minus two. Universe of the tangent at one. And because we know the changing of 5/4 is one. This give us one minus two times by fourth Which is one by half. And that's approximately equal To negative 0.57 0796. Uh 3- 6, 8. Okay, so these are the candidates for string values and functions of the largest of the three values. Is this one here. So it must be The absolute maximum value of the function over the interval 04. And it is occurring at the writing .4. So I will write this here. Absolutely maximum value of the function attained at the right important football. Now, the smallest of the three values is this one here one minus five half. And that attained at the critical number one. So this must be the absolute a minimum value of the function over the interest rate of four. So we write the answer following this observation here. So the the absolute minimum value of the function f uh in sorry on On dangerous 04 is this one here is one minus by health Which is a approximately equal to negative 0.57 0796 3268. And that absolute minimum of course at one. That is a critical number now. 40 absolute maximum Of the function on the interval. 04. He is this one here uh for minus two. Reverse of the tangent function at four which is approximately equal To 1.34836 for 6727. In that absolute maximum value value I forget here while you which of course at de critical number X equal one And I think I hear a road one which is four. It's clear. Look at this, it's just value here. This all here. Is that? Uh so sorry nice one. It was okay. And stopping a bit here. Uh critical number is one. We found it here above. Let's see it again. Critical number is one. So that that value one we have the absolute minimum. So the absolute minimum it's one minus pi half which I presumably equal to this value. And that of course are critical number one was perfect. Now for the absolute maximum value is four. This one here for my institute universal thing that four which presumably equal to that and that occurs. It's not a critical number repeating what it was love. It happens at four. That is the right and point of the interval. So here court at the right endpoint X equal for sorry for that. So this is a great answer and we recall a little bit what we have done here. So the first thing we got to do is to verify that the function is continuous on the clause interval that tells us that the extreme values of that functioning system, that interval are attained either at the end points of the interval or at critical numbers of the function. We calculated the first derivative of the function. We saw that that exists for every argument X in the interval 04. And for that reason the only critical numbers of the function of the in the intervals here for are those were the vax for which The first of the TV- zero we started that equation and there are two solutions native 11 but one of them namely X equal 91 is not in the internal steerforth. So the only critical number of the function f within the interval zero for is X equal one. So we have the critical number one. And the endpoints here. four. So we evaluated at those three points. And with that we found Like the absolute maximum value of the function over the Angels three or 4 which corresponds to the largest value calculated not just of the three values calculated uh Is 4 -2 tangent inverse at four, which is in fact the value that of course at Mexico four. Mhm. So the absolute maximum value Of the function over in two or 3 or four is 4 -2. Universal attended at four that which is approximately equal 1.34836467-7. And it occurs at the writing point of the interview that is at four, That's the largest value we found. And the smallest value, which is uh one minus by half, Which is approximately equal to negative 0.5707963268 Is then the absolute minimum value of the function over the interval 04 and it is attained or of course at the critical number X equal one. And so this is the final answer to the problem.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
65
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
43
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Caleb Elmore

Baylor University

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

02:37

Find the absolute maximum and absolute minimum values of $f$ on the given inter…

02:22

Find the absolute maximum and absolute minimum values of f on the given interva…

03:31

Find the absolute maximum and minimum values of $f$ on the given closed interva…

16:40

Find the absolute maximum and absolute minimum values of $f$ on the given inter…

03:42

find the absolute maximum and absolute minimum values of f on the given interva…

08:05

Find the absolute maximum and absolute minimum values of $f$ on the given inter…

01:11

Find the absolute maximum and absolute minimum values of $f$ on the given inter…

02:41

Find the absolute maximum and minimum values of $f$ on the given closed interva…

01:03

Find the absolute maximum and absolute minimum values of $f$ on the given inter…

05:03

Find the absolute maximum and absolute minimum values of $f$ on the given inter…

01:29

Find the absolute maximum and absolute minimum values of $f$ on the given inter…

11:47

Find the absolute maximum and absolute minimum values of $f$ on the given inter…

05:56

Find the absolute extrema of the function on the interval $[0, \infty) .$ $f(x)…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started