Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the dimensions of the rectangle of largest a…

04:19

Question

Answered step-by-step

Problem 26 Medium Difficulty

Find the area of the largest rectangle that can be inscribed in the ellipse $ x^2/a^2 + y^2/b^2 = 1 $.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Chris Trentman
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Chris Trentman

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

05:03

WZ

Wen Zheng

01:39

Amrita Bhasin

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 7

Optimization Problems

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

0:00

answer the following?

06:18

Find the dimensions of the…

02:23

A rectangle with sides par…

01:17

Find the dimensions of th…

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82

Video Transcript

there has to find the area of the largest rectangle that can be described in the Ellipse X squared three squared plus y squared over B squared equals one. Mhm. Mm. A lot of these hotels lately. And so imagine we have the sketch of this ellipse. Don't know so much. It was in France. We have a major axis of length in this case to a That's it. And be okay. Minor axis of length to V Now inside, the Ellipse will draw a rectangle like you do. Like Great. So now the width of this will be well, we'll call this. Uh I have a question. Um, you see. Ah, Is it possible? Yes, two times X and the height is two times y by symmetry. Yeah. So the area of the largest rectangle. Well, the area in general of the rectangle is two x times two. Why is four x y? We're both x and y are positive part Reynolds gave and solving for why? Hey, Bert, we have why squared is equal to B squared times one minus x square brace squared so that why is equal to the positive square root. This is just be times the square root of one minus X squared over a squared. This is the same as the over eight times the square root of a squared minus X squared. Plugging this into a We have a as a function of X is four x times do you over eight times the square root of a squared minus X squared. Now we know that that's it. Our area A is in fact, always positive for X greater than zero and X also has to be less than a so So it follows that the function f which is starting. Yeah. Sorry. So the function a is very so maximized. Yeah. I mean, that's like the Tim Allen when the function F, which is a squared, is maximized. So as a function of X, this is a squared of X, which is C 16 b squared over a squared X squared times a squared minus X squared. Now, to find the area of, well, the largest value of F the absolute max, we're gonna have to find the derivative of F prime of X. This is 16 b squared over a squared times two x times a squared, minus X squared plus X squared times. Negative two x, and we want to find the critical values. So we set X equal to zero. No itself. Really. Now this is only equal to zero. When to a squared X minus four X cubed equals zero or two X times two X squared minus a squared equals zero. Hey, it's me, Burt Reynolds work. It's working Herb Reynolds here. Damn, obviously. And so, in fact, er, this is two x times route to X minus a time is Route two X plus a equals zero first. But when the Mark Walberg and Ellen de Generous hilariously create convert so we have critical values X equals zero a over root two plus or minus Eva roof to I should say, however, we're only considering values of X between zero and a. So I'm just considering X equals zero a of a route to we saw I would say, Let's find the secondary, the double Planet X. Guess you asked the gym. So this is mhm 16 b squared over a squared yeah, times to a squared a minus 12 x squared. Now it's your Syria and we have the F prime of zero. Well, this is 16 B squared time is, too, which is clearly greater than zero. So it follows that F has a local minimum. I went at X equals zero. Let's look at our other critical value. It's inevitable. Prime of a over root two. Well, this is 16 B squared over a squared and two way squared minus 12 times a squared over two with minus six a squared. Just negative, right. Four times 16 B squared, which is less than zero. Therefore, by the second derivative test F has a local maximum. Speak at X equals over to 17. Now, let's compare the value of F A over two and the other end point PlayStation. Mm, Yeah, X equals a. I have a favor too. This is 16 b squared over a squared times a squared over two. Yeah, you got a real threat. Your career times a squared minus a squared over two, Which is right. Yeah, four a squared B squared, mhm. And on the other hand, f of a. This is just zero. So So it follows that f has in fact, an absolute maximum at X equals mhm over to and therefore it follows that our maximum area A is A f. Avery, too, which we plug this in. This is four times Eva route to time to be over a times the square root of a squared minus a squared over two, which is okay yourself something to a B talk. This is the area of the largest rectangle inscribed in the Ellipse.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
84
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
53
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

0:00

answer the following?

06:18

Find the dimensions of the rectangle of greatest area that can be inscribed in …

02:23

A rectangle with sides parallel to the coordinate axes is inscribed in the elli…

01:17

Find the dimensions of the rectangle having the greatest possible area that ca…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started