Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the derivative of the function using the def…

View

Question

Answered step-by-step

Problem 26 Medium Difficulty

Find the derivative of the function using the definition of derivative. State the domain of the function and the domain of its derivative.

$ g(t) = \dfrac{1}{\sqrt{t}} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Ma. Theresa Alin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Ma. Theresa Alin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

05:20

Daniel Jaimes

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 8

The Derivative as a Function

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

Find the derivative of the…

07:05

Find the derivative of the…

04:15

Find the derivative of the…

04:50

Find the derivative of the…

0:00

Find the derivative of the…

07:54

Find the derivative of the…

06:31

Find the derivative of the…

05:05

Find the derivative of the…

01:28

Find the derivative of the…

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67

Video Transcript

given GFT which is one over square root of tea. We need to find G prime of T. Using only derivative definition. Now by definition of derivatives we have G prime of T. This is equal to The limit as h approaches zero of G of T plus h minus guilty this all over each. And so from here we have limits As it approaches zero of 1 over the square root of T plus H -1 over the square of T. This times The reciprocal of a church is one over H. And then from here we want to combine the two fractions that's going to be limit as h approaches zero of we have an LCD of square it of T plus each time squared of teeth. And the numerator should be squared of t minus squared of T passage this times one over each. And then from here we want to rationalize the numerator. We multiply the numerator and denominator by the conjugate that is squared of T plus squared of T plus H. This all over the same expression squared of T plus square it of T plus H. And so simplifying this. We have The limit as h approaches zero of we have squared of tea and then squared minus the square of the squared of sleepless age. This all over we have squares a sleepless age times a squared of tee, times H times the congregate squared of T plus squared of T plus H. I'm simplifying this. We have they met H approaches zero of the numerator becomes t minus T plus H this all over. Yes scared of T plus H. Time squared of T. Times H times squared of T plus squared of T passage. Simplifying further we have in here this becomes minus t minus H. And so this simplifies to negative H. Because the tea will cancel. And so we have limits S. H approaches zero of negative H. Over we have squares of C. Plus age times the square root of T. Times age times squared of T plus squared of T passage. And then from here we can cancel the H. Reduce it to one. And so we have limit as H approaches zero of negative of one over square it of T plus H. Times squared of T. Times the square of T plus the square of T plus H. and then evaluating at age we get negative one over Square of TP0 that's squared of T. Times squared of T. Times we have squared of T. Plus scared of T. Plus zero. That's just squared of T. And so we have negative one over scared of tea time scared of T. That's just T. And then skirt of T. Plus scared of T. That's two square it of T. And so we have negative one over to T squared of T. And so this is the derivative of the function for the domain of G. F T. And G. Prime of T. F G F T Is one over the square root of T. Then T. Is restricted. such that T must be greater than zero only. It cannot equal zero because T. Is or the squared of T is in the denominator where it cannot be zero there, so it's only T greater than zero, or an interval notation. This is The interval from 0 to positive infinity, Where zero is not included. And if G prime of T is equal to negative one over to T squared of T, then it will have the same domain as the function because squared S. T. This is restricted. Such that team must be greater than zero because script of these in the denominator and the inside the squares must be positive. And so the domain must be The same 0 to positive infinity. zero is not included.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
83
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
52
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

Find the derivative of the function using the definition of derivative. State t…

07:05

Find the derivative of the function using the definition of derivative. State t…

04:15

Find the derivative of the function using the definition of a derivative. State…

04:50

Find the derivative of the function using the definition of a derivative. State…

0:00

Find the derivative of the function using the definition of derivative. State t…

07:54

Find the derivative of the function using the definition of derivative. State t…

06:31

Find the derivative of the function using the definition of derivative. State t…

05:05

Find the derivative of the function using the definition of a derivative. State…

01:28

Find the derivative of the function. $f(t)=\sqrt{1-t}$
Additional Mathematics Questions

07:34

Ten institutionalized cpileptic patients participated in # study of the anti…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started