Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the derivative of the function. $ g(x) = (2…

02:21

Question

Answered step-by-step

Problem 42 Hard Difficulty

Find the derivative of the function.
$ y = \sqrt {x + \sqrt {x + \sqrt {x}}} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Heather Zimmers
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Heather Zimmers

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

01:00

Frank Lin

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 3

Differentiation Rules

Section 4

The Chain Rule

Related Topics

Derivatives

Differentiation

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

05:01

Calculate the derivative o…

01:14

Calculate the derivative o…

00:38

Find the derivative of the…

06:36

Find the derivative of the…

01:02

Find the derivative of the…

02:23

Find the derivative of the…

Watch More Solved Questions in Chapter 3

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92
Problem 93
Problem 94
Problem 95
Problem 96
Problem 97
Problem 98
Problem 99
Problem 100

Video Transcript

all right here we have quite the extensive function that we're going to differentiate using the chain rule. And every time I have a square root function, I like to change it to a 1/2 power function before I differentiate. That allows me to use the product or the power rule. Excuse me. So that means I'm going to rewrite this as the quantity X plus the quantity X plus X to the 1/2 to the 1/2 to the 1/2 which really doesn't make anything look better. Um, and it's going to look pretty bad once I take the derivative, but then we'll kind of clean it up after that. So using the chain rule, we have white prime equals. We're going to work on the derivative of the outside function. So the outer 1/2 power function bring down the 1/2 and then take the entire inside and raise that to the negative 1/2. Now we move on to multiply by the derivative of the inside, and this is the insight. So the inside is a some and to find the derivative of a some you find the derivative of each term in the sun. So we start with the derivative of X, and that's one. And now we move on to adding the derivative of the second part of the some, and we're going to need the chain rule for that. So again, a 1/2 power. So bring down the 1/2 and raised the inside to the negative 1/2 and then we need to multiply by its inside derivative. So inside his X plus extra, the 1/2 which is also a some so it's derivative will be the the some of the derivatives. So the derivative of X is one plus the derivative of X to the 1/2 is 1/2 X to the negative 1/2. Now we made it to the very inside of everything. So the next thing we want to do is simplify our answer and change things back into square root signs. So we have this too, which is going to go in the denominator of the entire thing. And because this is to the negative power, it's also going to go in the denominator of the whole thing, and we're going to change it back to a square root sign. So all the 1/2 powers will be changed back to square root signs. So the denominator of the whole big answer is going to have a two in it. And then it's going to have the square root of X plus the quantity X whoops. How about if I go back and change that to a square root as well? I'm gonna make that notation look a little bit better while I'm erasing. Okay, so we're rewriting this thing right here. We're rewriting that. So it's a square root of X plus, the square root of X plus the square root of X. Okay, now we're gonna work on simplifying this thing, and it's our numerator. So it's actually, um Well, we've got the plus one. We can start with that, and then we're gonna work on this part in a very similar way. We just worked on the previous part, so we have the two on the bottom. We have a negative 1/2 power, so that part's gonna go on the bottom as well. So we're going to have the two times the square root of X plus square root X. So that takes care of all of this and then this part will be in the numerator. So in the numerator we have one plus. But now deja vu. This part is going to have a two on the bottom. And because of the negative power, the square roots going to be on the bottom. So one over two square root X So how is that for a tower of incredible numbers and algebra?

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
192
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
82
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

05:01

Calculate the derivative of the following functions. $$y=\sqrt{x+\sqrt{x+\sqrt{…

01:14

Calculate the derivative of the following functions. $$y=\sqrt{x+\sqrt{x}}$$

00:38

Find the derivative of the function. $f(x)=\sqrt[3]{x}+\sqrt[5]{x}$

06:36

Find the derivative of the function. $$ y=\sqrt{\frac{x}{x+1}} $$

01:02

Find the derivative of the function. $$y=\frac{x}{\sqrt{x^{2}+1}}$$

02:23

Find the derivative of the given function. $y=\tanh \sqrt{x}$
Additional Mathematics Questions

02:41

"Determine all homomorphisms from Zn to Itself: First, consider when n …

02:43

'The graph in the accompanying figure shows the average Fahrenheit temp…

07:42

'14.
73 points SCalcET8 13.2.022_
If r(t) (2e3t, 3e-3t 2te3t) , f…

03:13

'The revenue from the sale of product is_ in dollars; 1500x 3000(5x 3)-…

03:17

'Let M2x2 be the vector space of all 2 x 2 matrices , 33. and define T …

01:58

'6. The volume of a cantaloupe is approximated by V = 4/31r The radius …

01:31

"Problem 2 comex quadrilateral ABCD we have points P e AB; R e AD. Line…

00:35

'Verify that the following
identity; (sec(x) + 1)(sec(-x) 1) = tan?(…

01:58

'What are the absolute and relative condition numbers of the followi…

01:40

'An airliner carries 100 passengers and has doors with height of 76 in.…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started