Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Question

Answered step-by-step

Find the divergence of the field.The velocity field in Figure 16.13

Video Answer

Solved by verified expert

This problem has been solved!

Try Numerade free for 7 days

Like

Report

Official textbook answer

Video by Kevin Harmer

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Calculus 3

Chapter 16

Integrals and Vector Fields

Section 8

The Divergence Theorem and a Unified Theory

Vector Functions

Harvey Mudd College

Baylor University

University of Michigan - Ann Arbor

University of Nottingham

Lectures

03:04

In mathematics, a function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output. An example is the function that relates each real number x to its square x. The input of a function is called the argument and the output is called the value. The set of all permitted inputs is called the domain of the function. Similarly, the set of all permissible outputs is called the codomain. The most common symbols used to represent functions in mathematics are f and g. The set of all possible values of a function is called the image of the function, while the set of all functions from a set "A" to a set "B" is called the set of "B"-valued functions or the function space "B"["A"].

08:32

In mathematics, vector calculus is an important part of differential geometry, together with differential topology and differential geometry. It is also a tool used in many parts of physics. It is a collection of techniques to describe and study the properties of vector fields. It is a broad and deep subject that involves many different mathematical techniques.

01:10

Find the divergence of the…

02:18

In Exercises $1-4,$ find t…

03:26

02:09

In Exercises $1-8,$ find t…

00:37

05:22

04:37

all right. So finding the divergence of velocity field we have So we have a partial derivative with respect acts of our I had direction. So we have nothing in our direction. So that's gonna be zero. We have a partial derivative with respect to y and R J had direction, which is also zero. And then we have our partial derivative. With respect to Z in the Kayhan direction, we have to be a squared minus y squared minus X squared. So her first derivative, zero second derivative zero, our third derivative. We have no z's in the K had direction. So the diversions gonna be equal to zero plus zero and then plus our third derivative, which is zero, because we have no please, which is just fall zero.

View More Answers From This Book

Find Another Textbook