Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

(a) For $ f(x) = \frac{x}{\ln x} $ find each of t…

08:25

Question

Answered step-by-step

Problem 42 Easy Difficulty

Find the limit or show that it does not exist.

$ \displaystyle \lim_{x \to \infty} \bigl[\ln (2 + x) - \ln (1 + x) \bigr] $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Ma. Theresa Alin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Ma. Theresa Alin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

02:11

Daniel Jaimes

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 6

Limits at Infinity: Horizontal Asymptotes

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Grace He
Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

Find the limit or show tha…

0:00

Find the limit or show tha…

0:00

Find the limit or show tha…

00:18

Find the limit.
$$
\…

01:25

Find the limit or show tha…

0:00

Find the limit or show tha…

00:13

Find the limit.
$$
\…

01:38

Find the limit, if it exis…

02:45

Find the limit, if it exis…

0:00

Find the limit or show tha…

01:33

Find the limit or show tha…

01:22

Find the limit.
$$\lim …

01:33

Find the limit, if it exis…

01:22

Find the limit.
$$\lim …

02:13

Find the limits.
$$
…

0:00

Find the limit or show tha…

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81

Video Transcript

find the limit of Ln of two plus x minus Ln of one plus X. As X approaches infinity, we first rewrite this into the limit as X approaches infinity of L N of two plus x over one plus X. And here we use the property of natural log Ln of a minus Ln f b. This is equal to Ellen of a over B and then you sing limit loss for natural log functions. We can rewrite this further into Ln of the limit as extra purchase infinity of two plus X over one plus X. Now factoring out the very well with the highest exponent for the inside of L N. We have Ln limit as X approaches infinity of X times two over X plus one. This all over X times one over X plus one. And from here we have Ln of the limit as X approaches infinity of and here we can cancel out the X and we get two plus X plus one over one plus xbox one. and evaluating its infinity, we have L. N. of two over infinity plus one over one over Infinity Plus one. No constant over infinity. We'll always approach to zero and saw this to over infinity zero As well as one over infinity. And so we have Ln of 1/1. This is equal to Alan of one, that's Equal to zero. And so this is the value of the limits.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
65
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
43
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Grace He

Numerade Educator

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

Find the limit or show that it does not exist. $ \displaystyle \lim_{x \to …

0:00

Find the limit or show that it does not exist. $ \displaystyle \lim_{x \to …

0:00

Find the limit or show that it does not exist. $ \displaystyle \lim_{x \to …

00:18

Find the limit. $$ \lim _{x \rightarrow \infty}[\ln (2+x)-\ln (1+x)] $$

01:25

Find the limit or show that it does not exist. $ \displaystyle \lim_{x \to -…

0:00

Find the limit or show that it does not exist. $ \displaystyle \lim_{x \to -…

00:13

Find the limit. $$ \lim _{x \rightarrow \infty}\left[\ln \left(1+x^{2}\right)…

01:38

Find the limit, if it exists. $$ \lim _{x \rightarrow \infty} \frac{x^{2}}{\ln …

02:45

Find the limit, if it exists. $$ \lim _{x \rightarrow \infty} \frac{x \ln x}{x+…

0:00

Find the limit or show that it does not exist. $ \displaystyle \lim_{x \to …

01:33

Find the limit or show that it does not exist. $ \displaystyle \lim_{x \to …

01:22

Find the limit. $$\lim _{x \rightarrow+\infty}\left[x-\ln \left(x^{2}+1\right)\…

01:33

Find the limit, if it exists. $$ \lim _{x \rightarrow \infty} \frac{\ln x}{x^{2…

01:22

Find the limit. $$\lim _{x \rightarrow+\infty}[\ln x-\ln (1+x)]$$

02:13

Find the limits. $$ \lim _{x \rightarrow+\infty}\left[x-\ln \left(x^{2}+1\right…

0:00

Find the limit or show that it does not exist. $ \displaystyle \lim_{x \to \…
Additional Mathematics Questions

02:25

'The vertices of ∆DEF are D(2, –4), E(3, –4), and F(3, –2).Which figure…

04:29

'These box plots show shark attack data for the years 2005 to 2014 in F…

03:22

'How to do the ratios
eon Figure ABCD is & trapezoid: The length…

00:27

'Two parallel lines are crossed by a transversal. What is the value of …

00:29

"13. A cube with sides of length s is intersected by a plane that passe…

01:49

'For the following question, find the surface area of the regular pyram…

01:14

'Someone me please this hard?
2points
The slope of the line below…

02:55

'Please please please help me!!!!!
Which is the equation of the tren…

01:38

'Given: AB tangent to circle O at B, and secant through point A interse…

01:38

'Given: AB tangent to circle O at B, and secant through point A interse…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started