Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the limits as $ x \to \infty $ and as $ x \t…

04:42

Question

Answered step-by-step

Problem 61 Hard Difficulty

Find the limits as $ x \to \infty $ and as $ x \to -\infty $. Use this information, together with intercepts, to give a rough sketch of the graph as in Example 12.

$ y = x^4 - x^6 $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Daniel Jaimes
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Daniel Jaimes

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 6

Limits at Infinity: Horizontal Asymptotes

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

05:41

Find the limits as $ x \to…

05:39

Find the limits as $ x \to…

04:42

Find the limits as $ x \to…

07:01

Find the limits as $ x \to…

01:26

Sketch the graph of the fu…

01:12

Sketch the graph of the fu…

01:01

Find the limit of the func…

02:59

Find the limit, and use a …

01:04

Sketch the graph of the fu…

01:53

Determine the following li…

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81

Video Transcript

this brown number sixty one of the Stuart calculus. See, if Edition section two point six and the limits has X approaches Infinity and his X approaches Negative. Infinity uses information together with intercepts to give you a rough sketch of the graph. The function is why equals excellent forthe minus X to the six. Um, we're going to take our limit first, that sex approaches infinity and we need to reduce form of the function we're gonna factor out and makes of the fourth term. And that leaves us with one minus X squared. On this term, we can simplify even further as one minus X squared. Is this quick because the difference of squares and that leaves us with from one minus X and one plus six. Okay, as experts in Infinity, we know that this limit their properties, elements allows us to take the limit individually each term. It's well correct. And do that on the limited express infinity of ex fourth. It's going to be Kennedy multiplied by one minus a very large number. It's going to be negative infinity and the last term is one plus a very large number infinity. So out of three very large numbers being multiplied together yet another large number. And I think it is time to positives gives us a negative. So this limited purchase negative in committee as experts Negative infinity of the same function. Thanks to the forest One of my ethics times one plus x Here our limit If we do it again individually because their properties limits allow us to do that. Negative infinity. A very large negative number to the fourth Power is a very large positive number one minus a very large negative number is a very large positive number and then one plus a very large negative number is a very large negative number. So this limit a purchase negative to me as experts in negative infinity. Our next steps are to find the X Y intercepts the Y interceptors where X is equal to zero. And if we plug in our ah value zero for X, we get a zero to the forth my zero to the sixth for zero. So our why intercepted that the origin zero zero. And if we look for the X values that make y equals zero and we use our readies for him, exit the fourth one minus X times one plus six What is this? Equal to zero? The answers are the ex intercepts are zero positive one and a good one. So three ex intercepts one Why intercept? And we can go in and sketch what this craft may look like Point Our points of interests are native one the road No one. We know that as the function approaches negative infinity and positive infinity The functional virtual native infinity. So have this shape, you know above The XX is here. Touchdown! Here! The origin! Go back up and then come back! Yeah! So our function is of this form. We see that it clearly it's one way Intercept three ex intercepts and zero one and everyone and that the limit has X approaches. Infinity and negative Infinity both approached. Negative! Infinity on That is our final answer.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
84
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
53
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

05:41

Find the limits as $ x \to \infty $ and as $ x \to -\infty $. Use this informat…

05:39

Find the limits as $ x \to \infty $ and as $ x \to -\infty $. Use this informat…

04:42

Find the limits as $ x \to \infty $ and as $ x \to -\infty $. Use this informat…

07:01

Find the limits as $ x \to \infty $ and as $ x \to -\infty $. Use this informat…

01:26

Sketch the graph of the function to find the given limit, or state that it does…

01:12

Sketch the graph of the function to find the given limit, or state that it does…

01:01

Find the limit of the function (if it exists). Write a simpler function that ag…

02:59

Find the limit, and use a graphing device to confirm your result graphically. $…

01:04

Sketch the graph of the function to find the given limit, or state that it does…

01:53

Determine the following limits. $$\lim _{x \rightarrow \infty} \frac{6 x^{2}}{4…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started