Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the Maclaurin series for $ f(x) $ using the …

01:30

Question

Answered step-by-step

Problem 14 Easy Difficulty

Find the Maclaurin series for $ f(x) $ using the definition of a Maclaurin series. [ Assume that $ f $ has a power series expansion. Do not show that $ R_n (x) \to 0. $] Also find the associated radius of convergence.

$ f(x) = e^{-2x} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Carson Merrill
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Carson Merrill

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

02:43

WZ

Wen Zheng

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 10

Taylor and Maclaurin Series

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

08:56

Find the Maclaurin series …

01:30

Find the Maclaurin series …

01:46

Find the Maclaurin series …

07:34

Find the Maclaurin series …

03:59

Find the Maclaurin series …

03:29

Find the Maclaurin series …

02:00

Find the Maclaurin series …

02:13

Find the Maclaurin series …

03:55

Find the Maclaurin series …

02:14

Find the Maclaurin series …

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86

Video Transcript

So we're gonna be looking into the McLaurin. Siri's using the definition of MacLaurin series. So what we have is f of X being equal to e to the negative two x So first thing we're gonna wanna dio is find some of the first derivatives and calculate their values at X equals zero. So obviously f of as X equals each of the negative two X and f of zero equals one. Then F prime of X is equal to a negative to e to the negative two x and f prime of zero would then give us a negative, too. F double Prime of X is going to be for E to the negative two x f double prime of zero is gonna be four and then we'll do one more. We have f triple Prime of X is going to equal a negative eight e to the negative two x So have triple prime of zero is going to be a negative eight. So we see that we can plug everything into the General Taylor form with the McLaurin being equal zero. So we see that ffx is equal to f of a, but the is equal to zero. So one minus f prime of a over one factorial. So one minus two X and then we're just gonna follow the General Taylor Taylor form using a being equal to zero. So what we're gonna get is, um, this is gonna be then plus for over two factorial X squared minus 8/3 factorial x cubed plus you know, 16/4 factorial X to the fourth and so on. Then with that, we have that This is the summation from an equal zero to infinity of negative one to the end because we wanna alternate negative and positive times two to the end to get the 248 16 going and then times X to the end to get the degree of the X value. And that's obviously going to be over in factorial. Then by the alternating Siri's test, we see that the terms become smaller as an increases. Um, and in fact, Toyo grows faster than the numerator. So it's going to converge for all real numbers. Converges for all real numbers. And we see that the radius of convergence is r equals infinity. Then we could also do a ratio test to test it, but regardless we'll see that it does converge and the race of convergence is r equals infinity.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
129
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
63
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

08:56

Find the Maclaurin series for $f(x)$ using the definition of a Maclaurin series…

01:30

Find the Maclaurin series for $ f(x) $ using the definition of a Maclaurin seri…

01:46

Find the Maclaurin series for $ f(x) $ using the definition of a Maclaurin seri…

07:34

Find the Maclaurin series for $f(x)$ using the definition of a Maclaurin series…

03:59

Find the Maclaurin series for $f(x)$ using the definition of a Maclaurin series…

03:29

Find the Maclaurin series for $f(x)$ using the definition of a Maclaurin series…

02:00

Find the Maclaurin series for $f(x)$ using the definition of a Maclaurin series…

02:13

Find the Maclaurin series for $ f(x) $ using the definition of a Maclaurin seri…

03:55

Find the Maclaurin series for $f(x)$ using the definition of a Maclaurin series…

02:14

Find the Maclaurin series for $ f(x) $ using the definition of a Maclaurin seri…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started