Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the radius of convergence and interval of co…

04:12

Question

Answered step-by-step

Problem 14 Medium Difficulty

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {x^{2n}}{n!} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Gabriel Rhodes
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Gabriel Rhodes

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 8

Power Series

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

02:16

Find the radius of converg…

02:12

Find the radius of converg…

03:00

Find the radius of converg…

01:54

Find the radius of converg…

02:40

Find the radius of converg…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42

Video Transcript

since we haven't X to the two and here instead of just an axe to the end, we needto start from the top when we're figuring out the Raiders of Convergence. So as long as you remember what the radius of convergence means and we should be fine and just use the ratio test to proceed the ratio test we look at limit as n goes to infinity of a and plus one divided by a n Now, when we say and we mean this whole thing, including the X values on previous problems, we just meant you know, this whole thing except for the X values that here a n is X to the two and divided by in factorial. Okay, so this turns into limit as n goes to infinity of absolute value of X to the two times in plus one divided by in plus one factorial That's a and plus one. And we're dividing by a m. So we're multiplying by the reciprocal. So we're multiplying by in factorial divided by X to the two n So in factorial is one times two times three times dot, dot dot times in. So if you divide that by N Plus one factorial There's going to be a lot of cancelling that will occur and we'll just be left with in Plus one and then we have X to the two and plus one divided by extra to end so X to the two times in plus one is X to the two n plus two so excellent to and we'LL cancel out with this x to the two n and we'LL just have X squared here. And when you're doing the ratio test you want for this to be less than one. So figure out which values of X is going to make this less than one. Well, all of the values of acts are going to make this less than one. Doesn't matter if X is five ten a million, all all the values of actually going to make this less than one. So our radius of convergence is actually infinity and the interval of convergence is from minus infinity to infinity. Now, if it didn't happen to work out this way, the way you find the radius of convergence, if you only know the interval of convergence is toh, take the length of that interval and then divide it by two. So if this was from minus two, positive to than the radius of convergence would just be, too. In this case, it happens to be infinite and this ratio test here. Remember that in the case where you get equal toe one, you need to be careful when it's equal to one. That test is inconclusive, and you just need to figure out whether or not you get convergence or divergence another way either limit comparison test or a regular comparison test. But when it's equal the one, the test is not conclusive. But this is, Ah, good idea for just figuring out the radius of convergence. And in this case, the radius of convergence is infinity and the interval of convergences minus infinity to infinity. So we get convergence everywhere here.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
64
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
42
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

02:16

Find the radius of convergence and interval of convergence of the series. $ …

02:12

Find the radius of convergence and interval of convergence of the series. $ …

03:00

Find the radius of convergence and interval of convergence of the series. $$\su…

01:54

Find the radius of convergence and interval of convergence of the series. $$\s…

02:40

Find the radius of convergence and interval of convergence of the series. $$\s…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started