Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the radius of convergence and interval of co…

06:34

Question

Answered step-by-step

Problem 27 Medium Difficulty

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {x^n}{1 \cdot 3 \cdot 5 \cdot \cdot \cdot\cdot \cdot (2n - 1)} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Gabriel Rhodes
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Gabriel Rhodes

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 8

Power Series

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Heather Zimmers

Oregon State University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

06:34

Find the radius of converg…

01:39

Find the radius of converg…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42

Video Transcript

case of the radius of convergence is going to be limit as n goes to infinity of absolute value of a N over and plus one where a Is this chunk here without the X value And yeah, maybe we'll well, we'll do it using the ratio test just in case this is confusing to anyone. So the ratio test would do the same type of thing Except we have the sub script with the implicit one of top now and buy this being now we do mean this whole chunk here, including the X values. Hey, so this is going to be X to the n plus one over one times three times that that that times two in minus one times two in plus one minus one. Okay, And then so that's just are being plus one. And we're dividing by being somewhat planned by the reciprocal. So now I have an X to the end over there. Enough top. We're gonna have one times three times that, that that times two and minus one. And this whole chunk here is going to cancel out with this whole chunk here and actually and plus one divided by X to the n is just going to leave us with X. So now we have limits as n goes to infinity of absolute value of X and nothing got rid of this two times in plus one minus one. So we still have that there and for using the ratio test to figure out where we get convergence. We want for this to be something less than one. But notice that this term is going to go to zero as n goes to infinity. So it doesn't matter what value we plug in for X. We're always going to end up getting zero here. Zero is certainly less than one. So X is allowed to be anything for the radius of convergence is infinity, Which is exactly what we would have gotten if we I just did this here. This will short cup would have gotten that R is equal to limit as n goes to infinity of two times in plus one minus one and that would be infinity. Okay, So if the radius of convergence is infinite than the interval of convergences, certainly going to be infinite as well

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
162
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
70
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Heather Zimmers

Oregon State University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

06:34

Find the radius of convergence and interval of convergence of the series. $ …

01:39

Find the radius of convergence and interval of convergence of the series. $$\s…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started