Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Estimate $ \sum_{n = 1}^{\infty} (2n + 1)^{-6} $ …

05:36

Question

Answered step-by-step

Problem 38 Hard Difficulty

Find the sum of the series $ \sum_{n = 1}^{\infty} ne^{-2n} $ correct to four decimal places.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 3

The Integral Test and Estimates of Sums

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
DO

Didan O.

April 5, 2022

DO

Didan O.

April 5, 2022

Write a C++ program to find the sum of the following series using while statement 1+1/2^2+1/3^2+...+1/n^2.

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

21:16

Find the sum of the series…

0:00

. Find the sum of the seri…

03:28

Approximate the sum of the…

03:27

Approximate the sum of the…

02:25

Approximate the sum of the…

01:09

Approximate the sum of the…

03:09

Approximate the sum of the…

02:47

Approximate the sum of the…

01:23

Approximate the sum of the…

00:46

Find the sum of the series…

00:56

Find sum of the series su…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46

Video Transcript

in this problem were to find this sum this infinite Siri's correct to four decimal places. So here we see that our end term a N is given by N E to the minus to end. So that implies we should define the continuous version f to be X e to the minus two x where X is any real number at least one. So now the reason for noting this is that we can talk about the ear if we want to be correct to four decimal places, that puts a restriction on the air. So this is given by our end. If you use in terms and your partial sung, this is given by the sum minus the and partial some and using the inner qualities in this section In the textbook, this is less than the integral from end to infinity f of X, the X, which in our case we can just plug in that f there and technically this is a improper integral So we should go ahead. And instead of writing infinity here, let's just go ahead and write. This's a limit. Lemonis Kay goes to infinity. So this is the inner improper integral we'LL have to deal with, but in a moment. But in the meantime, let's go ahead and know what we want. We want his hair to be less than zero point zero zero zero zero five Dude surrounding if the air is less than this number datil insurers that our approximation agrees with the actual value s up to four decimal places. So what we should be solving? Is this here for end? Or we just at least want some end value that makes this true. So in this case, this integral ignoring the limit right now, we would have to evaluate this integral here. And to do this you might recognise integration by parts. That would be the way to go here. And since that's not the focus of this chapter, I'll just leave it to you to carry out the integration by parts here. But the left hand side, after taking the limit, becomes too, and plus one over four e to the to end. And we want that to be less than zero point zero zero zero zero and then five. And now it's just a matter of finding some and value that works. I try and equals five, and that just does not lead to a true inequality here. However, when I plug in and equal six in this case, the inequality becomes so two times six twelve plus one that's thirteen over for each of the twelve and the calculator, this is about point zero zero zero zero two, which is definitely less than this number here. So in that case, the inequality is true. Oh, and that means that if we want to have a son that's correct to four decimal places, we'LL just go ahead and take any pool six. This will imply that the remainder is less than the desire quantity. Well, you showed this on the previous page, so now we could actually just go ahead and write this out. This is the exact value us. This is approximately equal to a partial son. So one could write all these terms out. I'll do it. I'LL write out a few here and go into the calculator. That's about points one a one zero. So that will be the first four digits of this entire sum over here. And that resolves the problem

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
180
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
79
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

21:16

Find the sum of the series $ \sum_{n = 1}^{\infty} ne^{-2n} $ correct to four d…

0:00

. Find the sum of the series $\sum_{n=1}^{\infty} n e^{-2 n}$ correct to four d…

03:28

Approximate the sum of the series correct to four decimal places. $ \displa…

03:27

Approximate the sum of the series correct to four decimal places. $ \display…

02:25

Approximate the sum of the series correct to four decimal places. $ \display…

01:09

Approximate the sum of the series correct to four decimal places. $\sum_{n=1}…

03:09

Approximate the sum of the series correct to four decimal places. $$ \sum_{n=…

02:47

Approximate the sum of the series correct to four decimal places. $ \display…

01:23

Approximate the sum of the series correct to four decimal places. $\sum_{x=1}…

00:46

Find the sum of the series $\sum_{n=1}^{\infty} 1 / n^{5}$ correct to three dec…

00:56

Find sum of the series sum from n=0 to infinity of 2^n/(4^n n!)
Additional Mathematics Questions

05:44

Chapter 5, Section 5.1, Question 005
The figure below shows the velocity,…

03:03

Lucky Champ owes 5285,60 interest on a 8% loan he took out on his March 17 b…

01:50

Below is the graph of f(z) = cos(w)
2T
Find a single interval for <…

00:36

Verify ' the identity:
cOs 2x cos X - sin sin 2x cos *+ sin
Choos…

05:53

Section 3.2 Exponential Growth and Decay Exercise 15 which radioactive subst…

05:11

Chapter 12, Section 12.2, Question 029 Calculate [r1 (t) . rz (t)] and dir (…

03:41

The average blood alcohol concentration (BAC) of eight male subjects was mea…

05:41

point)
We want to find the area of a region S which lies below the graph …

02:54

Find the mass of the ball of radius centered at the origin with density flp,…

01:43

8) Find the centroid of the plane area shown_
r =38 in:
16 in_
20 i…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started