Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the values of $ p $ for which the integral c…

07:03

Question

Answered step-by-step

Problem 57 Hard Difficulty

Find the values of $ p $ for which the integral converges and evaluate the integral for those values of $ p $.

$ \displaystyle \int_0^1 \frac{1}{x^p}\ dx $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Willis James
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Willis James

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

04:36

WZ

Wen Zheng

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 7

Techniques of Integration

Section 8

Improper Integrals

Related Topics

Integration Techniques

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

08:57

Find the values of $ p $ f…

04:41

Find the values of $p$ for…

07:03

Find the values of $ p $ f…

02:37

Find the values of $p$ for…

04:12

Find the values of $p$ for…

04:22

Find the values of $p$ for…

11:18

Find the values of $p$ for…

06:08

Find the values of $p$ for…

00:46

For what values of $p$ is …

03:18

Determine all values of $p…

Watch More Solved Questions in Chapter 7

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82

Video Transcript

Hello. Welcome to this lesson in this lesson. Well, look at the value of feed that makes the whole integral converge then would also evaluate the integral. Now, if the value of P it's less than one dummies, that p is negative. Oh, zero. So that's a That's a very high core belief. She dad, the whole of that X, the puppy goes up. Okay. Yeah. So that would make the integral converge. Let's look at So you are looking at P. That is less than one. So, for example, if we have, if you have a P, we have a p of negative mhm one. Then it means that we have And we the whole thing here becomes X to the power, Okay, on the other side. Or if you haven't peer to be negative too, then we have quote us extra panic, add to the whole thing here, reserves to us about two. Okay, So prefer api. That is less than one. Okay, if we also have an API that is zero, it means that the whole thing here is one. Okay, So, as you can see, the whole integral convert, F p s less than one. Okay, that is a path. So let's look at the integral again. Yeah. So write it. Us this. Whoa, the X So glad. Well, in evaluation, we I'd want to Negative b. And this becomes okay. Yeah, the same. You know, at the same power. Okay. From 0 to 1. So here we can write it very well as one minus p. Then all over one, minus p. Again from 0 to 1. So we put in one fast. So one minus one all over one minus. Yeah. Uh, the access will change. So we have a woman. Okay. The excess school changes. Oh. Okay. So one in place of the X. The second path, we have zero in place of the X. Yeah, little. Yeah. So this gives us right one minus p as a power to the one to the pile of this. The whole thing still becomes one. Okay, then you have one minus p. The whole of this pod is zero. So the integral from 0 to 1, then x right one over X p. Yes, it is a call to 1 1/1, minus p. All right. So if PS one let's it's only fine And if P is anything that is less than one, for example zero. You see that? The whole of this becomes one. Okay, so this is the end of the lesson. Thank short time.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
67
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
45
Hosted by: Alonso M
See More

Related Topics

Integration Techniques

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

08:57

Find the values of $ p $ for which the integral converges and evaluate the inte…

04:41

Find the values of $p$ for which the integral converges and evaluate the integ…

07:03

Find the values of $ p $ for which the integral converges and evaluate the inte…

02:37

Find the values of $p$ for which the integral converges and evaluate the integr…

04:12

Find the values of $p$ for which the integral converges and evaluate the integr…

04:22

Find the values of $p$ for which the integral converges and evaluate the integr…

11:18

Find the values of $p$ for which the integral converges and evaluate the integ…

06:08

Find the values of $p$ for which the integral converges and evaluate the integ…

00:46

For what values of $p$ is the integral $$\int_{1}^{\infty} \frac{1}{x^{p}} d x…

03:18

Determine all values of $p$ for which the improper integral converges. $$\int_{…
Additional Mathematics Questions

02:21

Integrate the following functions w.r.t. x . 116 - 9 x^2

01:30

Integrate the following functions w.r.t. x . 1 (e^x-1)^2

03:28

Prove that : ( cosh x - sinh x ) ^ n = cosh ( n x ) - sinh ( n x )

02:57

Prove that 1 + 2cos^2 A1 + 3cot^2 A = sin^2 A

04:37

Prove that: ^nCr + ^nCr - 1 = ^n + 1Cr

00:32

Simplify and write in exponential form: [(6^2)^3 6^3] × 6^5

00:19

Simplify: 3 × 7^2 × 11^821 × 11^3

02:22

Some accounting software is user friendly requiring a training to the users.…

04:21

Subtract the sum of 865 & - 493 from the sum of - 380 & 675 .

03:55

The cross - section of a swimming pool is in the shape of a trapezim. The sw…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started