Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the volume of the described solid $ S $. Th…

05:20

Question

Answered step-by-step

Problem 55 Hard Difficulty

Find the volume of the described solid $ S $.
The base of $ S $ is an elliptical region with boundary curve $ 9x^2 + 4y^2 = 36 $. Cross-sections perpendicular to the x-axis are isosceles right triangles with hypotenuse in the base.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Chris Trentman
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Chris Trentman

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

03:20

WZ

Wen Zheng

01:44

Amrita Bhasin

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 6

Applications of Integration

Section 2

Volumes

Related Topics

Applications of Integration

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 2 / BC Courses

Lectures

Join Course
Recommended Videos

11:40

Find the volume V of the d…

02:51

Find the volume of the des…

02:37

The base of a solid is the…

03:16

The base of a solid is the…

10:24

The base of a solid is the…

05:16

$47-59$ Find the volume of…

02:36

Find the volume of the sol…

03:42

Find the volume of the sol…

02:30

Find the volume of the des…

Watch More Solved Questions in Chapter 6

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72

Video Transcript

would love to just were given a solid S and rest to find the volume of this solid. We're told the base of S. Is an elliptical region with a boundary curve. Nine X squared plus four Y squared equals 36. Thank you. And a cross sections perpendicular to the X axis are isosceles right triangles with a high pot in use in the base course It's got 100 clear and trade That one off the board. So the hypothesis of an isosceles right triangle. Right right. I'll call this each. We know the H satisfies S. Squared plus S. Squared. Since isosceles equals H. Squared. Where S. Are the other sides of the isosceles right triangle. Therefore we have that S. Is equal to H. Over the square root of two. And the area of our societies triangle is one half times the base which is age times the height. Uh huh. Or okay one half times S squared. Which in terms of H is one half times H squared over two which is H squared over four. Mcdonald's guilty or not guilty. Now to find a church, let's look back at our lips. So the top half of the ellipse you can find by taking the positive square root with respect, right? Why is a function of X? So we have that just lie. Why is equal to the positive square root of 1/4 of 36 -9 x squared. Which is the same as one half times the square root of 36 minus nine X squared. This is the top and the bottom of the ellipse is given by the equation Y equals negative one half times the square root of 36 minus nine X squared. Yes. Now either by symmetry or by using top minus bottom, we have the H as a function of X. Is going to be two times one half times the square root of 36 minus nine X squared. Which is just the same as the square root of 36 minus nine X squared. It's got to answer. And therefore the volume of the solid form from the cross section interpretation is the integral of the some of the areas of each triangle. It's the volume. V is the integral from. Well, we're going to let X range from, well, if you look at our lips, X range is from negative to to positive too. Of the area A of X. Dx. Now our area A of X. Well this is H of X squared over four. Yes. Without any practice song. I'll be and plugging in. This is the integral from negative 2 to 2 of 36 minus X squared over four dx drummed in. Yeah, that's that's always very that's awesome. You guys, and This is an easy integral to evaluate. Once you do, you should find this is 24

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
153
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
68
Hosted by: Alonso M
See More

Related Topics

Applications of Integration

Top Calculus 2 / BC Educators
Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Recommended Videos

11:40

Find the volume V of the described solid S. The base of a solid S is an ellipti…

02:51

Find the volume of the described solid $ S $. The base of $ S $ is the region …

02:37

The base of a solid is the region bounded by the ellipse $4 x^{2}+9 y^{2}=36 .$…

03:16

The base of a solid is the region bounded by the ellipse $4 x^{2}+9 y^{2}=36 .$…

10:24

The base of a solid is the region bounded by the ellipse $4 x^{2}+9 y^{2}=36 .$…

05:16

$47-59$ Find the volume of the described solid $S$ The base of $S$ is an ellip…

02:36

Find the volume of the solid whose base is the region between $y=x^{2}$ and $y=…

03:42

Find the volume of the solid with the given base and cross sections. The base …

02:30

Find the volume of the described solid $ S $. The base of $ S $ is the region …

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started