Refer a friend and earn $50 when they subscribe to an annual planRefer Now

Get the answer to your homework problem.

Try Numerade Free for 30 Days

Like

Report

Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line. Sketch the region, the solid, and a typical disk or washer.$$y=x, y=\sqrt{x} ; \quad \text { about } y=1$$

$$V=\frac{\pi}{6}$$

Calculus 2 / BC

Chapter 7

APPLICATIONS OF INTEGRATION

Section 2

Volumes

Applications of Integration

Campbell University

Harvey Mudd College

Baylor University

Boston College

Lectures

01:11

In mathematics, integratio…

06:55

In grammar, determiners ar…

04:16

Find the volume of the sol…

04:03

08:25

03:01

05:36

03:43

03:27

05:00

03:35

07:13

so I'm gonna find the volume. If I'm rotating around, why equals one? And I've already sketched out the graph for y equals X and then the graph for why I equals the square root of X. So that means the area bounded by. These is this part here. And if we want to take it around the line y equals one. They were thinking about this horizontal line y equals one that were rotating around retaining towards. So because I see that there's this big, empty space that I'm not using here, that means I'm considering this A washer method for the volume and for that washer method we know volume is pi times the integral of capital R squared minus lower case R squared. Now it is still with respect to X, the d X. I use here because why equals one is moving like it's the X axis. So that means I'm using X is my variable. So now I need to decide where did the X values happen? What is the first in the last x for the area and then set up capital R and lower case R. So first I like to look at the X values. And if you know a little bit about these graphs, then you should know hopefully where X and square root of X intersect. If not, you can solve for where these two things intersect. But it happens where X equals your own X equals one. So I know my limits for the integral are zero and one now for the capital are you're trying to think about? What would this volume be if I didn't have any missing pieces? Well, I didn't have anything missing at all. This volume would go all the way up to that line. Y equals one. See, high filled in with no space now well, that would be defined. Upper minus lower as one minus the straight line and straight line is X so capital are gonna call one minus X for lower case R. You're thinking about what am I trying to take away? So all this part here in between that I just colored in is what I want to take away. Well, that goes from one down to the square root graph. So one minus the square Durex. So these are the two things I want to fill in for Capital R and for lower case R on this problem. If I were to go through and then fill it in my hand, I would need to expand thes by no meals. Remember, since its squared your actual think of it like it's multiplying times itself. That would take a little time to multiply out. If you have the option to use a calculator, that's definitely the fastest choice here. If I type this whole thing in for my inner girl, I get 1/6. So my final answer is pi over six for the volume.

View More Answers From This Book

Find Another Textbook

In mathematics, integration is one of the two main operations in calculus, w…

In grammar, determiners are a class of words that are used in front of nouns…

Find the volume of the solid obtained by rotating the region bounded by the …

05:03

Determine whether each integral is convergent or divergent. Evaluate those t…

00:58

Find the limit, if it exists. If the limit does not exist, explain why.$…

02:05

The current in a wire is defined as the derivative of thecharge: $I(t)=Q…

05:56

$13-16=$ The given curve is rotated about the $y$ -axis. Find thearea of…

03:58

04:08

$41-42=$ Use integration by parts, together with the techniquesof this s…

02:29

$41-42=$ Find the general indefinite integral. Mlustrate by graphing several…

05:48

Find the exact length of the curve.$$y=\sqrt{x-x^{2}}+\sin ^{-1}(\sqrt{x…

07:55

$7-16=$ Use (a) the Trapezoidal Rule, (b) the Midpoint Rule,and (c) Simp…

92% of Numerade students report better grades.

Try Numerade Free for 30 Days. You can cancel at any time.

Annual

0.00/mo 0.00/mo

Billed annually at 0.00/yr after free trial

Monthly

0.00/mo

Billed monthly at 0.00/mo after free trial

Earn better grades with our study tools:

Textbooks

Video lessons matched directly to the problems in your textbooks.

Ask a Question

Can't find a question? Ask our 30,000+ educators for help.

Courses

Watch full-length courses, covering key principles and concepts.

AI Tutor

Receive weekly guidance from the world’s first A.I. Tutor, Ace.

30 day free trial, then pay 0.00/month

30 day free trial, then pay 0.00/year

You can cancel anytime

OR PAY WITH

Your subscription has started!

The number 2 is also the smallest & first prime number (since every other even number is divisible by two).

If you write pi (to the first two decimal places of 3.14) backwards, in big, block letters it actually reads "PIE".

Receive weekly guidance from the world's first A.I. Tutor, Ace.

Mount Everest weighs an estimated 357 trillion pounds

Snapshot a problem with the Numerade app, and we'll give you the video solution.

A cheetah can run up to 76 miles per hour, and can go from 0 to 60 miles per hour in less than three seconds.

Back in a jiffy? You'd better be fast! A "jiffy" is an actual length of time, equal to about 1/100th of a second.