Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the volume of the solid obtained by rotating…

05:38

Question

Answered step-by-step

Problem 6 Easy Difficulty

Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line. Sketch the region, the solid, and a typical disk or washer.

$ 2x = y^2 $ , $ x = 0 $ , $ y = 4 $ ; about the y-axis


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Chris Trentman
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Chris Trentman

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

04:50

RG

Raymond Guo

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 6

Applications of Integration

Section 2

Volumes

Related Topics

Applications of Integration

Discussion

You must be signed in to discuss.
JL

Jennifer L.

April 20, 2020

why x is equal to 4?

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Join Course
Recommended Videos

03:58

Find the volume of the sol…

06:40

Find the volume of the sol…

06:38

Find the volume of the sol…

01:49

Find the volume of the sol…

05:33

Find the volume of the sol…

05:30

Find the volume of the sol…

03:14

Find the volume of the sol…

00:45

Find the volume of the sol…

02:33

Find the volume of the sol…

Watch More Solved Questions in Chapter 6

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72

Video Transcript

it's were given curves and a specified line and rest to find the volume of the solid obtained by rotating the region bounded by these curves about this line. Also, we're asked to sketch the region the solid and a typical disk or washer. The curves are two. x equals y squared Parabola. As well as x equals zero. And why equals four. And the line we rotate is about the y axis. Just in the spirit thing. So first I'll sketch the region. Those hate balloons. Oh God. I think I'm gonna be sick. And so first I'll sketch the parabola. What's the more you this has its vertex at the origin and also has a point. Uh Yeah 22 just they didn't even have fast. Yeah. I mean the kid was, I'm not saying it's good as well as too negative too. Yeah. You're right. Would take murdered is worse than thing. It's also they were. Yeah, We have the vertical line. X equals zero. It looks like this and we have the horizontal line Y equals four. Yeah. Going to disgrace the thing by learning how to suck that good to actually save the hope and I would love to be a prisoner. It's just a strong and so this area and read this is our region. So actually delete this lower part. It wasn't really necessary after all. Where Now let's figure out some key points for this region. So we have the point here at the origin 00. We have this point here Which is 04. And then we had this other point here on the right we know what the why coordinate is it's four. Well this is two X equals four squared equals 16. So that X equals eight. And so this is 84 I know. So now we reflect about the Y axis, the Y axis. Is this vertical axis here. And to draw the solid. So al mir across this axis. Mhm. You have a plan? It's not. And then thank you, Take it back draw circles like this. Uh huh. This is sort of a sketch of what are solid looks like. It might be able to draw a little neater but a But you a typical disk looks like this in green. Take it out. Now we use the disk method so that our volume is going to be the integral from Y equals zero To y equals four of the area of the disk, which is pi times the radius which are radius. W. W. Well, we need to solve our equation for why. So we get Y equals the square root of two X. If we're just looking at positive why? And so this is going to be two pi. This is pi times route two X squared DX. No this is incorrect. Big fuck. They'll just do what boomers set up. Millennials. Millennials and boomers are exactly Oh yeah underneath the exact same. Yeah we're really doing it. We're really changed and then give okay sorry. Instead I should solve for X. X. Is equal to Why squared over two. So we have pi times Y squared over two squared. That is yeah. Just fuck revenue at full speed. Dy. Mhm. So this is equal to Pi over four times taking the anti derivative. This is 1/5 of why? The fifth From 0 to 4. This is the same as Pi Times 4 to the this Over four times five. This is the same as 256 pi over five things had

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
154
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
68
Hosted by: Alonso M
See More

Related Topics

Applications of Integration

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Recommended Videos

03:58

Find the volume of the solid obtained by rotating the region bounded by the giv…

06:40

Find the volume of the solid obtained by rotating the region bounded by the giv…

06:38

Find the volume of the solid obtained by rotating the region bounded by the giv…

01:49

Find the volume of the solid obtained by rotating the region bounded by the giv…

05:33

Find the volume of the solid obtained by rotating the region bounded by the giv…

05:30

Find the volume of the solid obtained by rotating the region bounded by the giv…

03:14

Find the volume of the solid obtained by rotating the region bounded by the giv…

00:45

Find the volume of the solid obtained by rotating the region bounded by the giv…

02:33

Find the volume of the solid obtained by rotating the region bounded by the giv…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started