Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find $ y' $ if $ x^y = y^x. $

02:24

Question

Answered step-by-step

Problem 51 Medium Difficulty

Find $ y' $ if $ y $ = In $ (x^2 + y^2). $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Bobby Barnes
University of North Texas

Like

Report

Textbook Answer

Official textbook answer

Video by Bobby Barnes

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

01:34

Frank Lin

01:54

Doruk Isik

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 3

Differentiation Rules

Section 6

Derivatives of Logarithmic Functions

Related Topics

Derivatives

Differentiation

Discussion

You must be signed in to discuss.
ma

Mati A.

November 6, 2019

where did the 1- go ?

Top Calculus 1 / AB Educators
Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

01:33

Find $y^{\prime}$ if $y=\f…

01:12

Find $y^{\prime}$ and $y^{…

01:00

Find $y^{\prime}$.

01:11

Find $y^{\prime}$ and $y^{…

01:17

Find $y^{\prime \prime}$.<…

04:29

Find $y^{\prime \prime}$

01:33

find $d y$.
$y=\frac{2 …

Watch More Solved Questions in Chapter 3

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56

Video Transcript

So if we want to find why, Prime, um, we could try to take the derivative of this directly. But one thing I want to do is first apply E on each side and you'll maybe see why I want to do this in a moment. So this is going to give us e to the y is equal to X squared plus y squared. All right, so now what I'm going to do is go ahead and take the derivative here. So we have deep I d. X so on the left side will have to apply chain rule to this eso It would be e to the y times the derivative of why, which is just why prime And then over here, we'd end up with two x plus, uh, in the derivative of y squared will have to use chain rules. Well, so would be to y times the derivative of why? Which is why prime And now we can go ahead and get our white crimes on the same side. So I'm going to subtract this over so it be e to the Y times Why prime minus two y y prime is equal to x then we can factor out the white primes. We get white prime, Um, times e to the y minus two y is equal to two X. Then we could go ahead and divide this over. So we did it with why Prime is equal to two X over e to the Y, minus two y. And so now this, I believe, looks a little bit different from what they give us the answer in the back of the book. Um, so let's go ahead and rewrite this so we can get it toe look more like that solution. So, um, in the solution, they have this to extra number in the minus two. Why there? So all we really need to do is somehow get rid of this e to the Y. Well, if we come back up to here, notice how we have eat the Y is equal to x squared plus y squared. So we could come down here and just plug that in. So the why Prime is equal to two x over X squared plus y squared minus two by which is exactly what we were given. So I mean, both of these are valid solutions I mean, the only reason why I really rewrote it in this way is toe make it look more like the answer in the back of the book. Um, but you can write it is either one of these and these are still valid solutions. Um, if you were to have just taken the derivative directly. So like, if we didn't do this exponentially ation of e on each side and just did the derivative directly, then you would have got this second one a little bit more straightforward. Um, but doing it there was a lot more algebra involved. So that's why I prefer to do it this way. So, yeah, I encourage you try to do it the first way more directly, and then you would see that. Oh, yeah. Doing it that way is a lot more work. Yeah, I mean, Either way, though, you get the same answer

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
142
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
68
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Top Calculus 1 / AB Educators
Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

01:33

Find $y^{\prime}$ if $y=\frac{x^{2}}{x^{2}+1}$

01:12

Find $y^{\prime}$ and $y^{\prime \prime}$. $$ x y^{2}+y x^{2}=2 $$

01:00

Find $y^{\prime}$. $$y=\frac{2}{x}-\frac{x}{2}$$

01:11

Find $y^{\prime}$ and $y^{\prime \prime}$. $$ 4 x y=x^{2}+y^{2} $$

01:17

Find $y^{\prime \prime}$. $$y=\frac{2}{x^{3}}+\frac{1}{x^{2}}$$

04:29

Find $y^{\prime \prime}$ $$y=x(2 x+1)^{4}$$

01:33

find $d y$. $y=\frac{2 x}{1+x^{2}}$

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started