Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

The table gives the midyear population of Japan, …

01:45

Question

Answered step-by-step

Problem 14 Medium Difficulty

For a fixed value of $ M $ (say $ M = 10), $ the family of logistic functions given by Equation & depends on the initial value $ P_o $ and the proportionality constant $ k. $ Graph several members of this family. How does the graph change when $ P_o $ varies? How does it changes when $ k $ varies?


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

EI
Eric Icaza
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Eric Icaza

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 9

Differential Equations

Section 4

Models for Population Growth

Related Topics

Differential Equations

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

13:37

Differential Equations - Overview

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. An ordinary differential equation (ODE) is a differential equation containing one or more derivatives of a function and their rates of change with respect to the function itself; it can be used to model a wide variety of phenomena. Differential equations can be used to describe many phenomena in physics, including sound, heat, electrostatics, electrodynamics, fluid dynamics, elasticity, quantum mechanics, and general relativity.

Video Thumbnail

33:32

Differential Equations - Example 1

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. An ordinary differential equation (ODE) is a differential equation containing one or more derivatives of a function and their rates of change with respect to the function itself; it can be used to model a wide variety of phenomena. Differential equations can be used to describe many phenomena in physics, including sound, heat, electrostatics, electrodynamics, fluid dynamics, elasticity, quantum mechanics, and general relativity.

Join Course
Recommended Videos

02:25

For a fixed value of $M(\o…

00:54

For a fixed value of $K($ …

03:07

For the logistic different…

03:58

Graph several members of t…

01:58

Graph several members of t…

Watch More Solved Questions in Chapter 9

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25

Video Transcript

Okay. This question asked about graphing logistic functions. So I'll write down what that is. The logistic function. It looks like this P of T equals M divided by one plus A. E. To the negative K. T. Where A is equal to m minus peanut divided by peanut. Okay, so you can think of em as the capacity. Peanut is the initial population. K. Is this scaling factor. And so when we are looking at these graphs, we're gonna want to compare what happens when we change some of these values. So I have grabbed a couple of examples below here and I'll say that read is when we have P. Not Equals two. I have a blue here. Blue is for one. p. not equals 0.5. And the last one is an orange. That's when He not equals .01. So for the red graphs, I'm going to look first at this first graph here, the red graph starts off above the cure carrying capacity. So you would expect it to go down to M which is one in this case. Uh The other two graphs are below the carrying capacity. So you would expect them to go up to em which is one. All right, M. equals one for all these. Okay, so if you start off with a smaller population, it's going to take more time for you to get to the caring capacity. If you change K. That's what the next two graphs show That determines how quickly you get to that caring capacity. So when K equals five we get there pretty quickly. It takes less than equals two to get to that care and capacity. But if you have K equals 20.5, it's going to take much longer to get to that point. So K. Represents the scale and that peanut is the initial, and that is how the logistic function changes as you change K, and peanut.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
67
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
43
Hosted by: Alonso M
See More

Related Topics

Differential Equations

Top Calculus 2 / BC Educators
Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

13:37

Differential Equations - Overview

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. An ordinary differential equation (ODE) is a differential equation containing one or more derivatives of a function and their rates of change with respect to the function itself; it can be used to model a wide variety of phenomena. Differential equations can be used to describe many phenomena in physics, including sound, heat, electrostatics, electrodynamics, fluid dynamics, elasticity, quantum mechanics, and general relativity.

Video Thumbnail

33:32

Differential Equations - Example 1

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. An ordinary differential equation (ODE) is a differential equation containing one or more derivatives of a function and their rates of change with respect to the function itself; it can be used to model a wide variety of phenomena. Differential equations can be used to describe many phenomena in physics, including sound, heat, electrostatics, electrodynamics, fluid dynamics, elasticity, quantum mechanics, and general relativity.

Join Course
Recommended Videos

02:25

For a fixed value of $M(\operatorname{say} M=10),$ the family of logistic funct…

00:54

For a fixed value of $K($ say $K=10)$ , the family of logistic functions given…

03:07

For the logistic differential equations. (a) Give values for $k$ and for $L$ an…

03:58

Graph several members of the family of functions $$f(x)=\frac{1}{1+a e^{b x}}$$…

01:58

Graph several members of the family of functions $$ f(x) = \frac{1}{1 + ae^{b…
Additional Mathematics Questions

01:44

Find the absolute value of the following rational number a) -5/7 b) -4/5 c)…

01:16

on a certain day the temperature outside a cold storage was 35℃ and inside i…

01:35

How many 5 digit (numerical) passwords are possible for the school email sys…

00:34

Rosa and her friends are eating out for dinner. The bill was $45.80. They wa…

01:50

Product of two number is 1720740. If one of the number is 1785, find the oth…

00:35

write the place value and face value of each digit in 8347

01:12

If 50g of sweets cost $2.10 find the cost of 380g of sweets giving your answ…

01:10

If the quotient obtained on dividing an integer by -9 is -8 find the integer…

01:47

Ravi ate in a restaurant and got a membership discount of 30% on the origina…

01:22

construct a rhombus with side 5.8cm and one of its angle equal to 60°.

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started