Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

If a rock is thrown vertically upward from the su…

02:28

Question

Answered step-by-step

Problem 8 Hard Difficulty

If a ball is thrown vertically upward with a velocity of $80 \mathrm{ft} / \mathrm{s},$ then its height after $t$ seconds is $s=80 t-16 t^{2}$
(a) What is the maximum height reached by the ball?
(b) What is the velocity of the ball when it is $96 \mathrm{ft}$ above the ground on its way up? On its way down?


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Heather Zimmers
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Heather Zimmers

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

01:24

Amrita Bhasin

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 3

Differentiation Rules

Section 7

Rates of Change in the Natural and Social Sciences

Related Topics

Derivatives

Differentiation

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

05:40

if a ball is thrown vertic…

06:19

A ball is thrown verticall…

02:35

Velocity A ball is thrown …

04:10

Physics A ball is thrown v…

01:59

Height of a Ball If a ball…

00:50

Height of a Ball If a ball…

Watch More Solved Questions in Chapter 3

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39

Video Transcript

in this problem were given the equation for the height of the ball, and we want to find its maximum height. There are two different ways we could do this. The first is sort of the algebra way, so we would recognize that this height equation is that of a parabola, and it would be a problem that opens down. And if we could find its Vertex, we would know the maximum. The other way to do it is to use calculus and to realize that when it's at its maximum, the derivative will be zero. And so that's when the velocity is zero. And my vote is to use calculus for this problem because we're in a calculus class. So we're going to find aware the the time that the velocity is zero. So we need to find the velocity. So we take the derivative of position and we get a T minus 32 T, and then we're going to see when that equals zero. So we set it equal to zero. Keep wanting to say wear it equals zero, but it's when it equal zero. Saw this for tea and we end up with T is 2.5 seconds. So now we want to find the height at 2.5 seconds. So now we go back to our height equation and substitute a 2.5 in there and we get 100 feet. And for Part B, we want to know the velocity when the height is 96 feet and the height is 96 feet in two different times, once when it's on its way up and once when it's on its way down. So the first thing we need to do is find the times that it has a height of 96 feet. So what we can do is take our high equation and set it equal to 96. So we have 96 equals 80 T minus 16 t squared. Let's get all the terms over to one side. So 16 t squared, minus 80 t plus 96 equal zero, and then the whole equation is divisible by 16. So we have t squared minus five. T plus six equals zero, and luckily that's factory Herbal. This is our lucky day. We can factor into T minus three times T minus two and then said each of those factors equal to zero, and we get the two times three seconds and two seconds Notice how those air symmetrical about the time when it was at the top. It was at the top at time, 2.5. So this all makes sense coming together. So now that we know the times, we want the velocities at those times. So the velocity at time to would be a T minus 32 times two, and that is 16 feet per second, and that's when it's on its way up. And then the velocity of time three would be a T minus 32 times three, and that is negative 16 feet per second, and that is on its way down.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
151
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
68
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Top Calculus 1 / AB Educators
Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

05:40

if a ball is thrown vertically upward with a velocity of 80m/s then its height …

06:19

A ball is thrown vertically upward with an initial velocity of 80 feet per seco…

02:35

Velocity A ball is thrown vertically upward from the ground at a velocity of 64…

04:10

Physics A ball is thrown vertically upward with an initial velocity of 80 feet …

01:59

Height of a Ball If a ball is thrown directly upward with a velocity of 40 $\ma…

00:50

Height of a Ball If a ball is thrown directly upward with a velocity of $40 \ma…
Additional Mathematics Questions

07:40

maximize f (x,y) = xy subject tox^2 + 2y^2 = 1

07:40

maximize f (x,y) = xy subject tox^2 + 2y^2 = 1

02:36

Verify the identity (sin x + cos x)^2 + (sin x - cos x)^2 = 2

01:53

If cos x = -1/3 and π/2 < x < π, find the value of cosx/2.

02:26

If a bank pays a 6% nominal rate, with monthly compounding, on deposits, wha…

01:14

What is the area of a circle if the diameter is 10

07:22

You work for a pharmaceutical company that has developed a newdrug. The pate…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started