Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Evaluate the indefinite integral. Illustrate, and…

07:15

Question

Answered step-by-step

Problem 50 Hard Difficulty

If $ \displaystyle \int_0^{\frac{\pi}{4}} \tan^6 x \sec x dx = I $, express the value of $ \displaystyle \int_0^{\frac{\pi}{4}} \tan^8 x \sec x dx $ in terms of $ I $.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 7

Techniques of Integration

Section 2

Trigonometric Integrals

Related Topics

Integration Techniques

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Heather Zimmers

Oregon State University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

05:30

If $ \displaystyle \int_0^…

00:17

Evaluate the integral.
…

01:40

Use the substitution $u=\t…

02:05

Evaluate the definite inte…

00:59

Evaluate the integrals by …

02:50

If $\int_{0}^{\pi / 4} \ta…

04:12

Evaluate the definite inte…

04:04

Evaluate integral

07:16

Evaluate the integral.
…

Watch More Solved Questions in Chapter 7

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70

Video Transcript

here we'd like to express the integral of attention to the eighth power time seek in in terms of the integral of tangents, of the six power of times he can't So here the first thing we could do is take this integral of ten eight times. He can't and just rewrite it by pulling that one factor of ten. So instead of Tanay, we have dance of the seven times ten then for this newer and a girl on the right side we could use integration, my parts. So let's take you to be a chance of the seventh so that by the chain rule we know that do you is seventeen to the sixth Power time's derivative of tension sequence where and then DX and we're left over with Devi to be Tim times he can you have a ten x seek an ex d x and we know the integral of this is vey wishes. Seek an ex So let's go ahead and apply our formula. So by integration, my parts we have you times feet. So the chance of the seventh time seeking and this is our UV and we have her end points zero in power before minus the integral part before of video. So it's going to pull out that seven. Then we have a tangents of the six power seek and square time seeking. So this is the minus minus in a rural need to you. So here we're using the integration by parts one. So a few things we can do here one the first thing we could do is evaluate this expression on the left by plugging in the end points. The other thing we can do is take this. C can't square and rewrite. This is tan squared plus one using your protagonist identities. So let's go ahead. And here I was, plugging the end point. First attention of power before is one. So we just have a once in the seventh and then seeking a power for a square, too. So this is when you plug in power before and when you plug in zero for X tangent zero zero. So we just attract nothing. So that's the first term. Now for the next term, let's go ahead and simplify this. So have I seven and the girls they are apart before. So after I multiply attention to the six power through the parentheses. We have tangent to the power times. He can't Great. And then we also have quite and split this up into two and minerals. We have negative seven and then we have ten to the six times, one times again and we can notice that this last and the girl over here is the same as the integral I that was given to us over here. So we we see already how we can express our general that we're starting with Wei appear on the left in terms of I but we have more simplification to do but that that this is where I was coming from. I also noticed that this circle this green terrible here is the same as the interval that we started with. So that suggests that we should push this negative seven to the other side to get a positive eight. No. So doing so. We have eight and a girl's ear apart before tangents to Dave equals one times swear too. So we have suero too, minus seven I and then dividing both sides by eight. We got our final answer. So we have square to over eight after dividing by eight. And then we have seven I over eight, and there's really no need to add a constancy of integration here because you could. It's already taken into account. By this. I turn because I is an animal so you could think of. I has already has the constant of integration so we could stop right here, and that's your final answer.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
192
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
83
Hosted by: Alonso M
See More

Related Topics

Integration Techniques

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Heather Zimmers

Oregon State University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

05:30

If $ \displaystyle \int_0^{\frac{\pi}{4}} \tan^6 x \sec x dx = I $, express the…

00:17

Evaluate the integral. $$\int_{0}^{\frac{\pi}{4}} \sqrt{\tan x} \sec ^{2} x d x…

01:40

Use the substitution $u=\tan x$ to evaluate the integral. $$\int_{0}^{\pi / 4} …

02:05

Evaluate the definite integral. $$ \int_{0}^{\pi / 4}\left(3 e^{x}-4 \sec x \ta…

00:59

Evaluate the integrals by any method. $$ \int_{0}^{\pi / 4} \sqrt{\tan x} \sec …

02:50

If $\int_{0}^{\pi / 4} \tan ^{6} x \sec x d x=I,$ express the value of $\int_{…

04:12

Evaluate the definite integral. $$\int_{0}^{\pi / 4} 6 \tan ^{3} x d x$$

04:04

Evaluate integral

07:16

Evaluate the integral. $$ \int \tan ^{4} x \sec ^{6} x d x $$
Additional Mathematics Questions

03:05

t: 13. Let p and q be odd primes: Prove: There are no primitive roots modulo…

02:57

Use the method of cylindrical shells to find the volume V generated by rotat…

04:24

The first significant digit in any number must be 1,2,3,4,5,6,7, or 9 It was…

02:16

Use the graph to find the following limits and function value lim f(x) X+2 l…

03:08

Sarah tiled her floor with square tiles. This is drawing of her floor: Shade…

02:24

The period of pendulum is the time the pendulum takes complete one back-and-…

03:28

13. A farmer wants to fence off & rectangular plot of land of area 800 s…

03:41

The number of hours of television watched per day by a sample of 28 people i…

03:52

Use & calculator to solve tho oquation on tho intorval [0,2x):
sinx= …

03:16

pcint FDPreCalc5 5.4.010-
Find the half-life of radioactive substance tha…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started