Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

A Cepheid variable star is a star whose brightnes…

01:13

Question

Answered step-by-step

Problem 80 Hard Difficulty

If the equation of motion of a particle is given by $ s = A \cos (wt + 8), $ the particle is said to undergo simple harmonic motion.
(a) Find the velocity of the particle at time $ t. $
(b) When is the velocity 0?


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Heather Zimmers
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Heather Zimmers

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

00:56

Frank Lin

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 3

Differentiation Rules

Section 4

The Chain Rule

Related Topics

Derivatives

Differentiation

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

01:30

If the equation of motion …

06:25

If the equation of motion …

02:07

If the equation of motion …

00:45

Starting at $t=0,$ a parti…

03:11

A particle moves along a l…

03:17

Simple Harmonic Motion The…

01:11

A particle moves in a stra…

04:02

A particle's accelera…

01:41

A particle is executing si…

Watch More Solved Questions in Chapter 3

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92
Problem 93
Problem 94
Problem 95
Problem 96
Problem 97
Problem 98
Problem 99
Problem 100

Video Transcript

here. We have an equation of motion, and, uh, some of the letters in here are Greek letters. So if you're not familiar with, um, the one that looks kind of like a W is Omega, and the one that looks kind of like a D is Delta. And those air constants in this equation and a is also constant. So are variable is teeth. So to find the velocity, we start by finding the derivative of position. Velocity is a derivative of position. Okay, so we're going to leave our constant a and then we notice that we have a composite function. So we're going to use the chain rule. The outer function is co sign, and it's derivative is negative sign. So we have negative sign of Omega T plus Delta. Now we need to multiply that by the derivative of the inside and the inside is Omega T plus Delta. And so it's derivative would be omega. Okay, let's simplify this a little bit. What we could do is multiply the a the negative and the Omega together, and we have the opposite of a Omega Times, a sign of omega T plus delta. So that's part A We have our velocity now for part B were interested in finding when the velocity is zero. Okay, that doesn't mean the time is zero. That means the velocity is zero and we're solving for the time. So we're going to take our our velocity negative eight times Omega sign of Omega T plus Delta. We're gonna set it equal to zero and solve this equation so that solving a trigger the metric equation, it's going to involve lots of trick. The first thing we can do is divide both sides of the equation by negative a Omega. And we have the sign of Delta T plus Excuse me, Omega T plus Delta equal zero. Okay, The next step is going to be to take the inverse sign of both sides. And so we have Omega t plus Delta equals Enver Sign of zero. That means the angle who signed is zero. And it just so happens lucky us that one of the angles who signed a zero is just zero radiance, but unlucky us. It also just so happens that they're infinitely many more answers. So let's take a look at that. So here we have our unit circle. We have zero radiance. This is the 00.10 So the sign is zero. So sign of zero is zero. Okay. However, you could go around the circle again and get to the same spot. Get to the same sign value and you have gone to pie Radiance. Or you could go again and you've gone four Pi radiance or again and again and again. You could go infinitely many times around the circle that way or back the other way so you could add two pi radiance infinitely many times. Similarly, you have another angle over here that has assigned value of zero, and you could come back to it infinitely many times by adding two pi radiance to it. Now let's consolidate those together. We have two answers at zero and at pi. And how far apart are they? They are pie radiance apart. So if you have one answer, you can go pie units and get to the next answer. Go pie radiance and get to the next answer and so on and so on infinitely many times. So how do we express that we can take one of her answers zero and say they were adding pi times n where n is an integer is an integer so that means you can add pie one time you can add pie two times you can add pine 99 times you can subtract pi Ah, 142 times You get all of the possibilities. So we're going to incorporate that into our answer back here. We're going to say that Omega T plus Delta is not just zero but zero plus pi en where n is an integer Now remember, the goal is to solve her time. So we're going to isolate T from here. So we're going to subtract Delta from both sides and we have Omega t equals Negative Delta plus pi n. We could write that as pie n minus Delta just to make it look a little bit better. And then finally will divide both sides by omega. So we have tea is equal to pi times n minus delta over omega. What a strange looking answer

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
67
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
44
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Top Calculus 1 / AB Educators
Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

01:30

If the equation of motion of a particle is given by $s=A \cos (\omega t+\delta)…

06:25

If the equation of motion of a particle is given by $s = A \cos ( \omega t + \d…

02:07

If the equation of motion of a particle is given by $s=A \cos (\omega t+\delta…

00:45

Starting at $t=0,$ a particle moves along a line so that its position after $t$…

03:11

A particle moves along a line so that, at time $t,$ its position is $s(t)=8 \si…

03:17

Simple Harmonic Motion The distance $s$ (in meters) of an object from the origi…

01:11

A particle moves in a straight line such that its displacement, s metres, is gi…

04:02

A particle's acceleration is described by the function $a_{x}=(10-t) \mathrm{m}…

01:41

A particle is executing simple harmonic motion with an amplitude $A$ and time p…
Additional Mathematics Questions

05:49

What is the probability Linda Lahey; company president; received exactly 3 n…

04:47

[-/1 Points]
DETAILS
SCALC8 16.6.019.
Find parametric representatio…

03:15

'ork 4 14.3-14.8 YouTube Submit { by 28 November) Svmbolab Mat
The p…

02:17

Determine an equation for the polynomial function that corresponds to the gr…

01:58

Let A and B matrices such that
C-1AC:
Show that det(B) = det(A):

01:07

Let M = 3
Find formulas for the entries of Mn , where n is a positive int…

04:54

(1 point) Select all of the linear transformations from @ ' to [ '…

01:35

The Fresnel function $ which has been used in optics and highway design; is …

02:51

Problem #7: A chain lying 0n the ground is 12 ft long and weighs 90 Ibs. How…

06:15

Let g(x) =
ft) dt, where f is the function whose graph is shown:
(a) E…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started