Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Brain weight $ B $ as a function of body weight $…

01:05

Question

Answered step-by-step

Problem 39 Medium Difficulty

If two resistors with resistances $ R_1 $ and $ R_2 $ are connected in parallel, as in the figure, then the total resistance $ R, $ measured in ohms $ (\Omega), $ is given by
$ \frac {1}{R} = \frac {1}{R_1} + \frac {1}{R_2} $
If $ R_1 $ and $ R_2 $ are increasing at rates of $ 0.3 \Omega/s $ and $ 0.2 \Omega/s, $ respectively, how fast is $ R $ changing when $ R_1 = 80 \Omega $ and $ R_2 = 100 \Omega? $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Amrita Bhasin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Amrita Bhasin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

03:06

WZ

Wen Zheng

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 3

Differentiation Rules

Section 9

Related Rates

Related Topics

Derivatives

Differentiation

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Grace He
Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

03:53

If two resistors with resi…

24:43

If two resistors with resi…

03:31

If two resistors with resi…

02:49


If two resistors with…

03:23

If two electrical resistan…

03:58

The combined electrical re…

04:29

Electricity The combined e…

01:42

Electrical Resistance If t…

02:28

The total resistance $R$ (…

Watch More Solved Questions in Chapter 3

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50

Video Transcript

Okay. Recall the fact that we have our run R two d r one over d, t and D are two over DT in this problem. Therefore, we know we can write out an equation. One over R is one of 11 over 80 plus one over r two. This simplifies to nine over 400 if we hop eight common denominators simplified which gives us our is 400 over nine because of one over ours. Not over 400 men are over. One of just our is 400 over nine. Therefore, we know we can multiply 400 over nine squared comes one over 80 squared times 0.3 plus one over 100 squared times 0.2 and then we know we can simplify to get 0.132 on the November. This is in terms of the units for resistance

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
154
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
68
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Top Calculus 1 / AB Educators
Grace He

Numerade Educator

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

03:53

If two resistors with resistances $R_{1}$ and $R_{2}$ are connected in parallel…

24:43

If two resistors with resistances R1 and R2 are connected in parallel, as in th…

03:31

If two resistors with resistance r1 and r2 are connected in parallel, as shown,…

02:49

If two resistors with resistances R1 and R2 are connected in parallel, as in …

03:23

If two electrical resistances, $R_{1}$ and $R_{2},$ are connected in parallel, …

03:58

The combined electrical resistance $R$ of $R_{1}$ and $R_{2}$, connected in par…

04:29

Electricity The combined electrical resistance $R$ of two resistors $R_{1}$ and…

01:42

Electrical Resistance If two electrical resistors with resistances R1 and R2 ar…

02:28

The total resistance $R$ (in ohms) of two resistors connected in parallel is gi…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started