Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

If $ p $ is a polynomial, show that $ \displaysty…

03:30

Question

Answered step-by-step

Problem 56 Hard Difficulty

In the theory of relativity, the Lorentz contraction formula
$$ L = L_0 \sqrt{1 - v^2/c^2} $$
expresses the length $ L $ of an object as a function of its velocity $ v $ with respect to an observer, where $ L_0 $ is the length of the object at rest and $ c $ is the speed of light. Find $ \displaystyle \lim_{v \to c}-L $ and interpret the result. Why is a left-hand limit necessary?


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Daniel Jaimes
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Daniel Jaimes

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 3

Calculating Limits Using the Limit Laws

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

02:45

In the theory of relativit…

03:10

In the theory of relativit…

05:59

In the theory of relativit…

02:04

In the theory of relativit…

00:45

According to the theory of…

03:17

The formula
$$
L=L_…

03:00

The formula
$$L=L_{0} \…

04:44

Relativity According to th…

03:28

In Einstein's theory …

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66

Video Transcript

This is problem or fifty six of the Stuart Calculus eighth edition, section two point three. In the theory of relativity, killer ends contraction formula ends. Hell equals al subzero. Time is a square root. Uh, the quantity one minus b squared over C squared This formula expressive the length l of an object as a function of its velocity. Be with respect in it and observer, where all subzero is the length of a dob. Check that rest and C is the speed of light. Find the limit and be a purchase See from the left with the function l ah and interpret the results. Why is the last time limit necessary? So let's answer the first question first. Well, we see that this functional is restricted by this square roots saying which it should be clear cannot take any negative numbers. It can't be that in mind. The domain of the square in here or a quantity inside of this square root needs to be, I reckon, greater than or equal to zero. This means that one must figure than equal to this racial and privately C squared needs to be greater than equal to V squared and at this point, we see that see must be greater than equal to B and in this way has via purchasing. We notice Avi is always less than thie. So we definitely are approaching C from the left. Now find this Lim. We approximate what we may be as a week approach. See? Well, it's used to excess institution one minus C squared over C squared. Excuse us. Screwed of one minus one. Which is, of course, zero. So the result is that and he doesn't want seen. So as your velocity approaches the speed of light the length of the object purchase zero. This means that the object essentially disappears as you approach on the speed of light.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
65
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
43
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

02:45

In the theory of relativity, the Lorentz contraction formula $$L=L_{0} \sqrt{1-…

03:10

In the theory of relativity, the Lorentz contraction formula $$L=L_{0} \sqrt{1…

05:59

In the theory of relativity, the Lorentz contraction formula L = Lo expresses t…

02:04

In the theory of relativity, the Lorentz contraction formula $L=L_{0} \sqrt{1-v…

00:45

According to the theory of relativity, the length of an object depends on its v…

03:17

The formula $$ L=L_{0} \sqrt{1-\frac{v^{2}}{c^{2}}} $$ expresses the leng…

03:00

The formula $$L=L_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}$$ expresses the length, $L,$…

04:44

Relativity According to the theory of relativity, the mass $m$ of a particle de…

03:28

In Einstein's theory of relativity, the length of an object depends on its velo…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started