Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Let $ \{ {b_n} \} $ be a sequence of positive num…

03:37

Question

Answered step-by-step

Problem 41 Medium Difficulty

Let $ \{ {b_n} \} $ be a sequence of positive numbers that converges to $ \frac {1}{2}. $ Determine whether the given series is absolutely convergent.

$ \displaystyle \sum_{n = 1}^{\infty} \frac {{{b_{n }^{n} \cos n \pi }}}{n} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 6

Absolute Convergence and the Ratio and Root Tests

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

03:37

Let $ \{ {b_n} \} $ be a s…

01:23

Determine whether the seri…

01:10

Determine whether the seri…

01:06

Determine whether the seri…

02:34

Let $a_{n}=\frac{2 n}{3 n+…

02:21

Let $\left\{b_{n}\right\}$…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53

Video Transcript

What bnb A sequence, A positive numbers conversion toe. One half. We want to know whether the Siri's convergence so as usual, let's denote this term and turn by an and let's try to apply the root test and we'LL see why I went to the Rue test of one second First noticed that co sign and pie. If you start plugging in values of end equal to one, two and so on, you see that the sequence starts off a negative one one and so on. So the sequence is really equal to negative wants to the end. So that means that my end, it's beyond to the end with negative once in the end. So here and the root tests, we'd like to look at the end through. So let me write this. You take your A m absolute value of that and then raise that to the one over an hour and I take the limit as n goes to infinity. This is the route test. Now we're taking up slew value, So that means we could drop the negative one. And when we raise B end to the end to the one over end, recall that you take those two exponents, multiply them together. In this case, that's just one. And here we don't need absolute value for being because we're already told that they're positive. So now my limit becomes I have just being on the top and now on the bottom here we'LL just have and one over. And so now it suffices to consider this last limit. You might have maybe memorized the formula involving this, but here I can show some work. So the problem with the limit in the denominator is that it's an indeterminate form of the type infinity to the zero power. So a nice way to deal with these is to do the following trick. So I'll use the fact that any number X could always be written as e to the natural log of X. So here I'LL do this formula using this is my ex value. So have e natural log of my ex and then here use your log properties to bring the one over end outside of the log and then now the limit is in the exponents. This is infinity over infinity. So you would go ahead and use Lopez House rule here so the derivative of natural log is one over end in the derivative of end is just one. So now this limit is just e to the zero, which equals one. So that means that the denominator approaches one so that this limit over here, where we stopped earlier, this limit is now just limited bm which is a half over this limit, which we just computed, which was one giving us an answer. What half? Now that's less than one. So by the root test, the Siri's is absolutely conversion. Yeah.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
63
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
42
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

03:37

Let $ \{ {b_n} \} $ be a sequence of positive numbers that converges to $ \frac…

01:23

Determine whether the series is absolutely convergent. $$\sum_{n=1}^{\infty} \f…

01:10

Determine whether the series is absolutely convergent. $$\sum_{n=1}^{\infty} \f…

01:06

Determine whether the series is absolutely convergent. $$\sum_{n=1}^{\infty} \f…

02:34

Let $a_{n}=\frac{2 n}{3 n+1}$ \begin{equation} \begin{array}{l}{\text { (a) D…

02:21

Let $\left\{b_{n}\right\}$ be a sequence of positive numbers that converges to …
Additional Mathematics Questions

01:25

The equation f(x) is given as x3+4x+1=0. Considering the initial approximati…

03:08

Newtons Law of Cooling can be used to find the temperature of a coffee as it…

01:20

In the game of roulette player can place a S9 bet on the number 29 and have …

02:45

The data given to the right includes data from 38 candies and 7 of them are …

02:07

Suppose that computer literacy among people ages 40 and older being studied …

02:10

Based on data from a college, scores on a certain test are normally distribu…

04:58

X= #sold 10 15 20 Probability 0.21 0.21 0.26 0.16
What is the probability…

03:07

Assume that when adults with smartphones are randomly ected, 42% use them in…

01:48

e+ dv + 2e*y = 19 dx

04:39

Determine whether the series converges or diverges:
4 + 3n 4n n =
conv…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started