💬 👋 We’re always here. Join our Discord to connect with other students 24/7, any time, night or day.Join Here! # Let $\displaystyle g(x) = \int^x_0 f(t) \, dt$, where $f$ is the function whose graph is shown.(a) At what values of $x$ do the local maximum and minimum values of $g$ occur?(b) Where does $g$ attain its absolute maximum value?(c) On what intervals is $g$ concave downward?(d) Sketch the graph of $g$.

## local $g^{\prime}(x)=0 \quad g^{\prime}(x)<0$max $g^{\prime}(x)=0 \quad \theta^{\prime \prime}(x)>0$

Integrals

Integration

### Discussion

You must be signed in to discuss.
##### Top Calculus 1 / AB Educators ##### Catherine R.

Missouri State University ##### Kristen K.

University of Michigan - Ann Arbor ##### Samuel H.

University of Nottingham ##### Michael J.

Idaho State University

Lectures

Join Bootcamp

### Video Transcript Ohio State University

#### Topics

Integrals

Integration

##### Top Calculus 1 / AB Educators ##### Catherine R.

Missouri State University ##### Kristen K.

University of Michigan - Ann Arbor ##### Samuel H.

University of Nottingham ##### Michael J.

Idaho State University

Lectures

Join Bootcamp