Enroll in one of our FREE online STEM summer camps. Space is limited so join now!View Summer Courses

University of Delaware

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81

Need more help? Fill out this quick form to get professional live tutoring.

Get live tutoring
Problem 56

Population Growth The rate of growth $d P / d t$ of a population of bacteria is proportional to the square root of $t,$ where $P$ is the population size and $t$ is the time in days $(0 \leq t \leq 10) .$ That is,

$\frac{d P}{d t}=k \sqrt{t}$

The initial size of the population is $500 .$ After 1 day, the population has grown to $600 .$ Estimate the population after 7 days.

Answer

$$

\begin{array}{l}{f^{\prime \prime}(x)=\sqrt[3]{x}} \\ {f^{\prime}(x)=\frac{3}{4} x^{\frac{4}{3}}} \\ {f(x)=\frac{9}{28} x^{\frac{7}{3}}}\end{array}

$$

You must be logged in to like a video.

You must be logged in to bookmark a video.

## Discussion

## Video Transcript

so. Oh, we have duping me, too. People, too. Room two on the piers Hero. This 500. Well, taking the time from Pune. You too. You too. You should have. Yeah, Okay. Two Tintin choose. Okay, times 2/3. 223 rounds close. Some constancy with as a team appear. Zero. It happens to be 500. Is he quitting? Okay, Time's 2/3 time. Zero 23 hours close. So seems 500. Yeah, So on the seventh day Sorry. We skipped ahead a bit too far. I know that one 600 and that's T K over three times. 12123 hives. Class 500. Taking the 500 from both sides. We have 100. Simple 2/3. Can clients that okay is 300 over to which is 150. Let me your team. It's equal to 150 over three times two just 100 23 hours, US. So that implies that seven. See, once you know, 100 terms sermon to the three hives. Close 500. Put the make sense

## Recommended Questions