Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the derivative. Simplify where possible. $ …

00:51

Question

Answered step-by-step

Problem 29 Medium Difficulty

Prove the formulas given in Table 6 for the derivatives of the following functions.
(a) $ \cosh^{-1} $
(b) $ \tanh^{-1} $
(c) $ csch^{-1} $
(d) $ sech^{-1} $
(e) $ \coth^{-1} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Clarissa Noh
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Clarissa Noh

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 3

Differentiation Rules

Section 11

Hyperbolic Functions

Related Topics

Derivatives

Differentiation

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Grace He
Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

10:04

Prove the formulas given i…

11:42

Prove the formulas given i…

06:54

Prove the formulas given i…

04:28

Prove the formulas given i…

02:41

Prove each of the differen…

03:02

Prove each of the differen…

0:00

Find the derivative of eac…

00:42

Find the derivatives of $\…

01:17

Prove each of the differen…

Watch More Solved Questions in Chapter 3

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59

Video Transcript

he It's clear it's only me right here So that inverse of co sign for my public function. It is equal to L on of X plus square root of X square minus one, and for the derivative L N of X plus the square root of X square minus one, you have it equal to one over X plus square. Root that square minus one tons de over D x of X plus square root of X square minus one, which is equal to one over X plus square root specs Square minus one win won't supply square root of X square minus one waas X over square of X square minus one, which is equal to one over square root of X square minus one part B where you make why we go up to the inverse tangent. The hyperbolic function so tangent of why is equal to X. We differentiate to get seeking square of nuts. So why d Why is equal to D. X? So we get D y o ver de acts to be won over the sequence square. So do you. Why, over DX is equal to one over one minus and Tangent Square which is equal to one over one minus expert for part c. Well, then allow Why to be able to cool seeker in verse when we get coast seeking is equal to X. We differentiate implicitly some negative co sika. Why co tangent public function of why do you Why is equal to d X? So we get you on a value for d y o ver de acts. We just stopped it too, which becomes equal to negative one all over co sika wide plus or minus squaring of one plus co Siegen square of one which is equal to a negative one over X times plus or minus square root of one plus X square which is equal to negative one over absolute value of X square root of one plus X squared. For a party, we allow why to be going to seek int in verse. So seeking of why is equal to X. So we got a deal over D X to be equal to negative one over a secret over tangent. We're just gonna substitute and just the hyperbaric function. Why? For plus or minus square root of one minus see good square. So we got negative one over my public function of sequined, plus or minus square root one minus sequence square of why and this becomes equal to negative one over X plus or minus. It's where it of one minus X square. So looking at the domain, we could just use the positive route since it zero comma negative zero comma, one included.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
127
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
62
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Top Calculus 1 / AB Educators
Grace He

Numerade Educator

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

10:04

Prove the formulas given in the Table 1 for the derivatives of the functions (a…

11:42

Prove the formulas given in Table 1 for the derivatives of the functions (a) co…

06:54

Prove the formulas given in Table 1 for the derivatives of the functions (a) c…

04:28

Prove the formulas given in Table 1 for the derivatives of the functions (a) $…

02:41

Prove each of the differentiation formulas. (These exercises involve hyperbolic…

03:02

Prove each of the differentiation formulas. (These exercises involve hyperbolic…

0:00

Find the derivative of each function. (a) $f(x)=\cosh ^{-1} 2 x$ (b) $f(x)=\sin…

00:42

Find the derivatives of $\cosh ^{-1} x$ and $\tanh ^{-1} x$ by differentiating …

01:17

Prove each of the differentiation formulas. (These exercises involve hyperbolic…
Additional Mathematics Questions

00:40

'Question 2 of 10
The circle below is centered at the point (-2, 1) …

00:31

'help pls like ahhh ahshfbfb
The chess club teacher; Ms Lee, is maki…

03:17

'please help !!!!!!!!!!
Question 1
0.5 pts
The duration of a s…

00:48

'The circle below is centered at the point (5,3) and has a radius of le…

01:01

'There are 40 markers in a bag. Of the 10 scented markers, 6 are perman…

00:28

"I monitor the amount of battery left on my computer so I can make sure…

02:57

'can someone help me with this please?
Which function has the large…

01:51

'Help.Find the area of the composite shape
What is the area of the c…

05:52

'The graph below describes the journey of a bus between two stops.a) Wo…

01:22

'Classify the following triangle. Check all that apply.
104"

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started