Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Prove the identity. $ \cosh (-x) = \cosh x $ (Th…

01:57

Question

Answered step-by-step

Problem 7 Easy Difficulty

Prove the identity.
$ \sinh (-x) = -\sinh x $ (This shows that $ \sinh $ is an odd function.)


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Yuki Hotta
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Yuki Hotta

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

00:20

Amrita Bhasin

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 3

Differentiation Rules

Section 11

Hyperbolic Functions

Related Topics

Derivatives

Differentiation

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Anna Marie Vagnozzi

Campbell University

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

01:23

The hyperbolic sine functi…

00:35

$7-19$ Prove the identity.…

01:06

Prove that $\sinh x$ is an…

01:15

Verify that the hyperbolic…

01:04

Verify the identity.$$\sin…

02:36

Show that $\sinh (-x)=-\si…

05:31

The hyperbolic cosine and …

Watch More Solved Questions in Chapter 3

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59

Video Transcript

All right, So in this problem, we are going to prove sinche. The hyperbolic Sinus sometimes pronounce inch. So for simplicity, I'm going to call it that way. We're going to prove cinch off. Negative X is negative. Sin jacks. Now, if you can recall that f off negative, X equaling effort negative ffx when this happens, F of X is called an odd function. So this problem is equivalent to saying, since of X is an odd function, and that's what we're going to prove. All right, so we start the proof with the definition. What? It's sinche FX. We know that this is equal to e to the X minus e to the negative x divided by two. So to figure out what cinch off negative X is equal to, we substitute X with negative X and see what's gonna happen. The first X becomes a negative x negative X becomes a positive X, And as you can see, you can pull out a negative from both of these two terms on the numerator. So it'll be negative e to the x minus into the matrix, all divided by two. And we know that this portion is cinch of X, so it to sum it up, this is negative cinch of X, and that is exactly what we're trying to prove. So to summarize it, we start with the definition we plug in Negative X and then showed that we are able to pull out a negative, and that proves that cinch of X is an odd function.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
192
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
82
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Top Calculus 1 / AB Educators
Anna Marie Vagnozzi

Campbell University

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

01:23

The hyperbolic sine function is defined by $\sinh (x)=\left(e^{x}-e^{-x}\right)…

00:35

$7-19$ Prove the identity. $\sinh (-x)=-\sinh x$ (This shows that sinh is an …

01:06

Prove that $\sinh x$ is an odd function of $x$ and that $\cosh x$ is an even fu…

01:15

Verify that the hyperbolic sine function $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$ is …

01:04

Verify the identity.$$\sinh (-t)=-\sinh t ;$ the hyperbolic sine function is od…

02:36

Show that $\sinh (-x)=-\sinh (x)$

05:31

The hyperbolic cosine and hyperbolic sine functions are defined by $$ \cosh x=\…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started