Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Around 1910, the Indian mathematician Srinivasa R…

21:29

Question

Answered step-by-step

Problem 49 Easy Difficulty

Prove the Root Test. [Hint for part (i): Take any number $ r $ such that $ L < r < 1 $ and use the fact that there is an integer $ N $ such $ \sqrt [n]{\mid a_n \mid} < r $ whenever $ n \ge N.] $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

EI
Eric Icaza
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Eric Icaza

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 6

Absolute Convergence and the Ratio and Root Tests

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Anna Marie Vagnozzi

Campbell University

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

04:52

Prove the Root Test. [Hint…

10:50

For every positive integer…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53

Video Transcript

in this question we're asked to prove the root test. So let's look at the first part and compare it to the proof of the ratio test here we have the limit as an approaches infinity of the anthem route of the absolute value. A suburban. This equals a value L. Which is less than one. So we can find a number are that's in between L. And one. This allows us to say that there's in N. Thank you. So that this N fruit is less than our for and that's bigger than or equal to this end that we've chosen. Okay Now we can rewrite this inequality as the absolute value of a seven is less than our to the end and we can change this end value. So we have. Okay the absolute value of a sub N minus or plus one. Let me make that a little bit clearer for. Yeah This will be less than our to the end plus one Because we're just replacing the end with the end plus one. So if we were to take a look at this series starting with K equals N to infinity absolute value. Ace. Okay muse equals the value of a sub. And plus the absolute value of a sub and plus one on and on and on forever. We can say that this would be less than or to the end plus R. to the n. plus one. On and on forever. Now these are Zara geometric series with Are less than one. So it's convergent and because our original series is less than a convergent series. This series converges by the comparison test. The first end terms don't matter because they will not affect the convergence or divers. It just matters what happens um from and to infinity. Okay, that's the first part. The second part is the divergence criteria. So if we have the limit as N approaches infinity of the and fruit of a sub N and we say this is equal to L. If L is bigger than one, then again we can find a value are that's in between one and L. So we can say the absolute the N. Through of the absolute value is greater than or Which is greater than one. And so the absolute value is greater than or to the end which is greater than one, raise the young, which is just one. But this means that the limit as and approaches infinity uh is so Ben Is not equal to zero. So this series diverges by the divergence test, you need that limit to equal zero. Uh and if it doesn't then the series can't converge. Okay, let's take a look at the last part. The last part is when it's inconclusive, If the limit is equal to one. So this means that you can't tell whether it converges or diverges similar to the ratio test and you can use the same example, we have the some of one over N. In the some of one over and squared. We know that this diverges this converges. Yeah, but both have the limit as an approaches infinity of this, and route shows that the root test is inconclusive When the limit is equal to one.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
63
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
42
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Anna Marie Vagnozzi

Campbell University

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

04:52

Prove the Root Test. [Hint for part (i): Take any number $r$ such that $L < r …

10:50

For every positive integer $\mathrm{n}$, prove that $\sqrt{(4 n+1)}<\sqrt{n}+\s…
Additional Mathematics Questions

04:04

3. Tina had this last question to solve in order to get her Master’s degree …

05:03

A farmer owns a triangular piece of land. He wants to find the
length of …

02:14

This diagram shows a few roads in the town where Shannon lives. Shannon need…

03:53

You have been asked to design a rectangular box with a square base and an op…

17:03

solve the wave equation

01:18

find the volume of the solid obtained by rotating the region bounded by y=x^…

06:21

A wind turbine has blades 50m in diameter and an overall height (to the high…

03:24

I need help with this one.

01:06

F(x) x3+7x2-6x-42

03:45

This question was just answered, but how do you know that this is a right tr…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started