Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Prove the statement using the $ \varepsilon $, $ …

01:59

Question

Answered step-by-step

Problem 26 Easy Difficulty

Prove the statement using the $ \varepsilon $, $ \delta $ definition of a limit.

$ \displaystyle \lim_{x \to 0} x^3 = 0 $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Daniel Jaimes
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Daniel Jaimes

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 4

The Precise Definition of a Limit

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Grace He
Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

01:59

Prove the statement using …

04:47

Prove the statement using …

0:00

Prove the statement using …

03:38

Prove the statement using …

07:16

Prove the statement using …

01:55

Prove the statement using …

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44

Video Transcript

this problem. Number twenty six of this tour. Calculus s edition, Section two point four. Prove the statement using the Absalon Delta definition of eleven. Tell him it is experts. Zero x cubed. Is he called a zero? The Epsilon Delta definition of element states that this limit is true and is equal to zero as long as there's an absalon to greater than zero that for every Absalon greater than zero, you find a delta greater than zero such that if the value of the difference between X and a his lesson delta, then the asset value of the difference being the function and the limit l is less than Absalon. We'LL begin with the second inequality and specifically playing our function of interest are function here is X cubed minus still amid which is equal to zero must be. Listen, Absalon, if we simplify this just a bit, get the cube root. And if we take the cube root on both science, we should get this statement here. Be absolutely vexes. Listen, the cube root of Absalon working with this first inequality the absolutely of X minus A. In our case, a is zero. That's what X is approaching is less than Delta should be. Zero. And we if we simplify experience zero, it just gives this up. So I vexes. Listen, Delta. And then at this point, we can compare these two inequalities and see that an appropriate choice of Delta would be dealt is equal to the cube root of Absalon. And this relationship itself proves that there is a delta created zero for any absolute zero as long as it's a plan is greater than zero that satisfies all these inequalities and statements as satisfies the definition of a limit. The excellent if not the definition of a limit which proves our statement proves the limit exists and is he cool to zero?

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
67
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
45
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Grace He

Numerade Educator

Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

01:59

Prove the statement using the $ \varepsilon $, $ \delta $ definition of a limit…

04:47

Prove the statement using the $ \varepsilon $, $ \delta $ definition of a limit…

0:00

Prove the statement using the $ \varepsilon $, $ \delta $ definition of a limit…

03:38

Prove the statement using the $ \varepsilon $, $ \delta $ definition of a limit…

07:16

Prove the statement using the $ \varepsilon $, $ \delta $ definition of a limit…

01:55

Prove the statement using the $\varepsilon_{t} \delta$ definition of limit. …
Additional Mathematics Questions

03:26

(4 pts ) For each year the populalion of flowers in @ garden is represented …

02:34

The graph of the rational function, g(x), is given to the right It is made u…

01:26

SPRECALC7 3.4.006,Mi;
MYNOTLS
ASk YouR TexchER
List 4M pos? Dle rto…

01:05

Which of the following planes is the equation for the plane with an x-interc…

01:58

QUESTION
Microprocessor 68000 Motorola system consists of three (3- main …

02:27

Find the daily consumer surplus if the demand equation is given by P = ~0.1.…

02:48

Calculate a business's producer surplus if they sell an item at $ 15 , …

03:29

Hw22-double-integrals-over-general-regions: Problem 11
Problem Value- poi…

12:13

Use the functions fand g in C[-1, 1] to find (f, g), Ilfll; Ilg l, and d(f, …

00:57

Identify the vertex by writing the equation in the standard form of a quadra…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started