Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Prove the statement using the $ \varepsilon $, $ …

03:38

Question

Answered step-by-step

Problem 24 Easy Difficulty

Prove the statement using the $ \varepsilon $, $ \delta $ definition of a limit.

$ \displaystyle \lim_{x \to a} c = c $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Daniel Jaimes
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Daniel Jaimes

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 4

The Precise Definition of a Limit

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Grace He
Catherine Ross

Missouri State University

Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

01:50

Prove the statement using …

01:57

Prove the statement using …

01:59

Prove the statement using …

03:38

Prove the statement using …

02:18

$19-32$ Prove the statemen…

02:17

Prove the statement using …

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44

Video Transcript

this problem Number twenty four of this tour Calculus eighth edition Section two point four Prove the statement using the absolute out the definition of a limit The limit is, experts say, of sea. Is he called to see you? Ah, the Epsilon Delta definition of limit is that for any absolute greater than zero there exists a delta greater than zero such that if the absolutely of the difference between exiting is less than a delta, then you have the value of the different between the function and l will be less than absolute. We'LL begin with the second limit and work from there are the second inequality. Second, inequality states that absolutely of the function In this case, the function is seen minus the limit. Tell him it is equal to seem This must be lesson Absalon, if we take C from CC represents a constant value to any content and it's the exact same constant zero and the absurd values here with zero and we get the statement that zeroes less than epsilon. Now what we should do first is we call Absalon is always greater than zero. That was one of our conditions and here and this. Working with the second inequality, we get a statement that is always true because of this case. Absolute skated in zero absolutely great isn't zero. Therefore, we can conclude any Delta choi. Any choice of Delta allows for our statement to be consistent, since regardless of any absolute that we choose, any Delta will be permissible because the statement will always be true and this limit always exists, regardless of choice of the telltale.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
191
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
81
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Grace He

Numerade Educator

Catherine Ross

Missouri State University

Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

01:50

Prove the statement using the $ \varepsilon $, $ \delta $ definition of a limit…

01:57

Prove the statement using the $\varepsilon, \varepsilon$ definition of limit. …

01:59

Prove the statement using the $ \varepsilon $, $ \delta $ definition of a limit…

03:38

Prove the statement using the $ \varepsilon $, $ \delta $ definition of a limit…

02:18

$19-32$ Prove the statement using the $\varepsilon, \delta$ definition of a lim…

02:17

Prove the statement using the $ \varepsilon $, $ \delta $ definition of a limit…
Additional Mathematics Questions

01:24

if an=3+5n then find sum of 24 terms of an A.P

08:33

Two parallel chord PQ and MN are 3cm apart on the same side of a circle wher…

02:17

If 30% of a radioactive substance disappears in 10 days, how long will it ta…

03:04

Divide x^5 + 4x^4 – 4x^3 – 10x^2 + 28x – 1 by x^2 + 2x – 3

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started