Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Review Conceptual Example 7 in preparation for this problem. In tests on earth a lunar surface exploration vehicle (mass $=5.90 \times 10^{3} \mathrm{kg}$ ) achieves a forward acceleration of 0.220 $\mathrm{m} / \mathrm{s}^{2} .$ To achieve this same acceleration on the moon, the vehicle's engines must produce a drive force of $1.43 \times 10^{3} \mathrm{N}$ . What is the magnitude of the frictional force that acts on the vehicle on the moon?

Get the answer to your homework problem.

Try Numerade free for 7 days

Like

Report

130 $\mathrm{N}$

Physics 101 Mechanics

Chapter 4

Forces and Newton’s Laws of Motion

Newton's Laws of Motion

Applying Newton's Laws

University of Michigan - Ann Arbor

Simon Fraser University

University of Sheffield

University of Winnipeg

Lectures

03:28

Newton's Laws of Motion are three physical laws that, laid the foundation for classical mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. These three laws have been expressed in several ways, over nearly three centuries, and can be summarised as follows: In his 1687 "Philosophiæ Naturalis Principia Mathematica" ("Mathematical Principles of Natural Philosophy"), Isaac Newton set out three laws of motion. The first law defines the force F, the second law defines the mass m, and the third law defines the acceleration a. The first law states that if the net force acting upon a body is zero, its velocity will not change; the second law states that the acceleration of a body is proportional to the net force acting upon it, and the third law states that for every action there is an equal and opposite reaction.

03:43

In physics, dynamics is the branch of physics concerned with the study of forces and their effect on matter, commonly in the context of motion. In everyday usage, "dynamics" usually refers to a set of laws that describe the motion of bodies under the action of a system of forces. The motion of a body is described by its position and its velocity as the time value varies. The science of dynamics can be subdivided into, Dynamics of a rigid body, which deals with the motion of a rigid body in the frame of reference where it is considered to be a rigid body. Dynamics of a continuum, which deals with the motion of a continuous system, in the frame of reference where the system is considered to be a continuum.

05:11

Review Conceptual Example…

02:13

Review Conceptual Example …

03:17

00:41

What is the acceleration o…

01:06

02:49

(II) Calculate the acceler…

02:44

01:04

Find the acceleration of a…

01:41

02:23

Suppose the mass of a full…

01:11

Find the acceleration prod…

To solve this question, you have to apply Newton's second law on the situation on the room. In the situation, there are two forces acting on the vehicle, the driving force on the frictional force. So Newton's second law tells us that the net force acting on the vehicle is ICO streets mass. Multiply it by its acceleration. No, the net force is composed by these two forces, the driving force and the frictional force. Let us set our reference point as pointing to the right. So everything that is pointing to the right will be positive and everything that is pointing to the left will be negative. As a consequence, then the driving force is positive and the frictional force is negative and we have mass times acceleration on the right side of the equation. Now we can plug in the values that were given by the problem. So we have 1.43 time stand to the third as a driving force. Miners there no frictional forces being equals to the mass off the eagle, 5.9 times 10 to the 30 kilograms times declaration off 0.22 meters per second squared. Then we can solve this equation for the driving force. To get that the driving forces are equal to 1.43 times 10 to the third miners, 5.9 thanks tend to the third time, 0.22 and these gives us a driving force of approximately 130 new times.

View More Answers From This Book

Find Another Textbook

Cornell University

Rutgers, The State University of New Jersey

University of Washington

McMaster University